Department of Chemistry

Sheldon Group

Our Research

Our research considers fundamental questions of optical energy conversion relating to plasmonic and inorganic nanoscale materials. Our experiments are principally designed to identify and optimize unique nanoscale phenomena useful for solar energy conversion, as well as related opportunities at the intersection of nanophotonics and chemistry for broad application beyond the scope of solar energy.

The current world record solar cell operates at 44.4% power conversion efficiency. Thermodynamic analyses indicate that much higher efficiency is theoretically possible. Indeed, technical challenges, rather than laws of nature, limit current solar power convertors from achieving the maximum thermodynamic efficiency of 95%.

  • We explore how nanofabricated optoelectronic and plasmonic materials can provide systematic control of the thermodynamic parameters governing optical power conversion for optimization that can shape, confine, and interconvert the energy and entropy of a radiation field.
  • We employ optical and electrical characterization techniques with high spatial and energy resolution to probe optical excitation and relaxation mechanisms in nanostructured metals and semiconductors.