EPA's Chemical Compatibility Chart EPA-600/2-80-076 April 1980 ## A METHOD FOR DETERMINING THE COMPATIBILITY OF CHEMICAL MIXTURES Please Note: This chart is intended as an indication of some of the hazards that can be expected on mixing chemical wastes. Because Trease Yore: Instant is menered as an indication of some of the management and the expected on inning treinical wastes. Declared of the differing activities of the thousands of compounds that may be encountered, it is not possible to make any chart definitive and all inclusive. It cannot be assumed to ensure compatibility of wastes because wastes are not classified as hazardous on the chart, nor do any blanks necessarily mean that the mixture cannot result in a hazard occurring. Detailed instructions as to hazards involved in handling and disposing of any given waste should be obtained from the originator of the waste. | | ng of any given waste should be obtained |-------------------|--|-------------------------|------|--------|-----------|----------------|-----------|---------|--------|----------|-----|---------|-----------|-------|------|---------|---------|-----------|----------|--------------|---------|-----------|----------|---------|--------|--------|-----------|-----------|----------|---------------------|----|----------|---------|------------|----------|---|--------|-----|-----|-----------|-----------------|-----------|----------| | # | REACTIVITY GROUP NAME | 1 | Acids, Mineral, Non-oxidizing | 1 | | | | | | | | | | | | C | CODE | | | | | CONS | EQUI | ENCI | 2 | Acids, Mineral, Oxidizing | | 2 | | | | | | | | | | | | Н | Шог | t Con | eration | | 00110 | LQUI | 22.102 | - | G | _ | | | | | | | | | | | | | | | ciation | 3 | Acids, Organic | H | F | 3 | | | | | | | | | | | F | Fire | 4 | Alcohols and Glycols | H F | P | | 4 | - | | | | | | | | | G | Inn | ocuou | s and no | n-flam | mable | gas ge | enera | tion | 5 | Aldehydes | n n | P | | | 5 | _ | | | | | | | | GT | Tox | ic Gas | formati | ion | 6 | Amides | H G | г | | | | 6 | i | | | | | | | GF | Fla | nmab | le Gas fo | rmatic | n | Amines, Aliphatic and Aromatic | H G | | | | | | | | | | | | | E | | losion | 7 | Azo Compounds, Diazo | н н | H | ŀ | 1 | - | | - | Ħ | 8 | Compounds and Hydrazines | G G | | . (| 3 | н | | | G | 8 | | | | | P | Vio | lent P | olymeriz | ation | 9 | Carbamates | G G | Г | | | | | | Н | | 9 | | | | S | Sol | ıbiliza | tion of t | oxic su | bstanc | e | 10 | Caustics | н н | H | | | н | | | | G | | 10 | | | U | Ma | y be h | azardou | s, but U | Jnkno | wn | 11 | Cyanides | GT G | - 0 | T
F | | | | | G | | | | 11 | H,F H, | F H | ,GT | | GF | | | H | | 7 | | · · · |] | 12 | | GF GI | - 0 | F | | GT | - | U | G
H | | + | | | | 12 | 1 | 13 | Esters | H F | - | | | - | | | G | _ | | 1 | | | | 13 | _ | 14 | Ethers | H F | | | | | | | | | | | | | | | 14 | _ | 15 | Fluorides, Inorganic | GT G | г | т | | | | | | | | | | | | | | 15 | 16 | Hydrocarbons, Aromatic | H | | | | | | | | | | | | | | | | | 16 | H H, | | | | 1 | 1 | н | Н | + | - | 1 | | | | | 1 | | | _ | 17 | Halogenated Organics | GT GT
H H, | F H | - | + | \vdash | + | GT
H | Н | | ŀ | | H
H | | | | + | + | - 1 | 17 | 18 | Isocyanates | G G | ГС | F | • | 1 | | Р | G
H | | (| 9 | G | U | | | | | | 1 | 8 | 19 | Ketones | H F | | | | | | | G | | ŀ | 1 | н | | | | | | | | 19 |) | 20 | Sulfides | GT H,
GF G | г | | | | | | H
G | | | | | | | | | | н | н | н | 2 | 21 | Metals, Alkali and Alkaline Earth,
Elemental | H,F H, | F H | F I | H,F
GE | H,F
GF | GF
H | GF
H | G
H | F G
H | F (| €F
H | GF
H | GE H | GT | GF
H | | | H | GF
H | GF
H | <u> </u> | | | | | <u> </u> | O. | | | | | | | | 01,11 | 01 | - 1"- | 22 | Metals, Other Elemental & Alloys
as Powders, Vapors, or Sponges | H,F H,
GF GI | F G | i | | | | | H, | | | €F
H | | | | | | | H | GF
H | | H,I
GF | | 22 | Metals, Other Elemental & Alloys | H,F H, | F | | | | | | Н, | F | | | | | | | | | н | 23 | as Sheets, Rods, Drops, etc. | GF GI | | | | | | | G | | | | | | | | | | F | | | | | | 23 | _ | | | | | | | | | | | | | | | | | | | 24 | Metals and Metal Compounds,
Toxic | s s | s | | | | s | s | | | 5 | 3 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | | | | | | 25 | | GF H,
HF E | | F (| H,E
GE | GF
H | | | u | H
G | | | GF
H | GF | н | GF
H | | | GF
H | | GF
H | GF
H | F | | | | 25 | H,GT H, | F | | | | | | | Ť | T. | | | | | | | | | | | ľ | H | | | | GF
H | Ι | | | | | | | | | | | | | | | | | 26 | | H, | F | | | | | | | | ŀ | | | | | | | | | | | | H,E | | | Ť | H,E | 26 | 1 | | | | | | | | | | | | | | | | 27 | Nitro Compounds, Organic
Hydrocarbons, Aliphatic, | G ⁻ | Г | | | Н | | | | | E | | | | | | | | | | | | GF | н | | | GF | | 27 | | | | | | | | | | | | | | | | 28 | Unsaturated Hydrocarbons, Aliphatic, | H F | _ | | | Н | | \perp | | 4 | _ | | | | | | - | | | | _ | | | Ē | | | | | | 28 | ì | | | | | | | | | | | | | | 29 | Saturated | F | 29 | | | | | | | | | | | | | | 30 | Peroxides and Hydroperoxides,
Organic | H H | | 1 | H T | H
G | | H
GT | H, | | | | H,E
GT | H,F | GT | | | | H | н | E | H,I
GT | . E | H
G | | H
G | H,E
GF | H,P
GT |] | Н [—]
Р | | 30 | | | | | | | | | | | | | | | H | | ľ | | | | Ţ. | H | T | T | | | Ĺ | | | | | T | Н | | Ĭ. | GF
H | ĺ | | | GF
H | Ė | | | | | 31 | | | | | | | | | | | | 31 | Phenols and Cresols
Organophosphates, | | | | | 1 | 1 | + | - | + | _ | | | | | | 1 | | | F | | + | П | | 1 | | | | | | | | 31 |] | | | | | | | | | | | 32 | Phosphothioates,
Phosphodithioates | H H | г | | | | | | U | | H | 1 | | | | | | | | | | | н | | | | | | | | | U | | 32 | | | | | | | | | | | 33 | | GT H | - 0 | т | | u | | | F | | | | | | | | | | | U | | | | | | | | | | | | H
GT | | | 33 | , | | | | | | | | | | | н н | Н | ŀ | | П | | н | H | | ŀ | | Н | | | | + | | | н | | н | н | н | | | Н | | \vdash | | | Н | Н | | Н | | | | | | | | | | 34 | | P P
H H, | F | F | • | U | | Р | Р | - | F | • | Р | U | | | | | | | | Р | P
H,F | Р | 1 | ľ | P
H,F | - | | | | P
H,F | Р | U | Р | 3 | 34 | | | | | | | | 101 | | G G | г , | | | - | | \perp | н | | | , | | | | н | - | 1 1 | | | | | G
H | Н | н | | GF | | | | | GT
H | | | L. | н | 1
H | 101 | | | | | | | | Explosives | n H | E | | | | | | E | | ŀ | | | | | E | | | | | | | E | E | E | E | E | | | | | rı
E | E | | E | E | E | | 102 | | | | | | 102 | 1 | P P
H H | P | | | | | | P
H | | F | ,] | P
H | U | | | | | | | | | P
H | РН | P
H | P
H | P
H | |] | _ | | P
H | P
H | | P
H | | | H | 1 | 103 | | | | | 102 | Polymerizable Compounds | r. 1** | - 12 | - | | Н | H,F
GT | H,F | | H,
G | | | H,E
GT | H,F | ОТ. | Н | Н | H | | H,F | H | H,I | H,F | | H | ľ | H,F
E | H,F | | H | | H
G | H | H,F | H,F | | F H, | | | H,F | | | | | 102 | Polymerizable Compounds | H | | _ L | - | | | | | | | | | | GI | F | I. | F | G1 | | | G1
H | I.E. | E | r | 1 | _ | GT
H | E | г | | | jF . | GT
H,GT | GT | G | | | | | | | | | 102
103
104 | Oxidizing Agents, Strong | H
GT
H H, | F H | T F | H.F | F
H,F | Н | Н | | | • | | Н | ,. | | | | l lu | i,F IT | 1 | 1 | 1 | | | | | | 1 | 1 | | Į. | Н | Н | H,GT | | | Н | Н | 1 1 | GT
H,P | 104
H,F | | | | 102 | Oxidizing Agents, Strong Reducing Agents, Strong | H
GT
H H,
GF G | F H | 1 | H.F | F
H,F
GF | Н | Н | | Ĭ | | | H
GT | н | F | | | Ē | ,r n | GF
H | GF | GF | н | н | | | н | GF | E. | | | H
E | H
GF | H,GT
GF | | н | | Н | 1 1 | H,P | 104
H,F
E | 105
GF | <u>-</u> | | 102
103
104 | Oxidizing Agents, Strong | н н. | F H | 1 | H.F | H.F | Н | Н | G | | | | Н | Н | | | | E | E | GF
H
G | GF | GF | H
GF | H
GF | | s | H
GF | GF | E | | | H
E | H
GF | H,GT
GF | GT
GF | н | Н | Н | 1 1 | H,P | H,F | 105 | | ## **Chemical Compatibility Chart** Below is a chart adapted from the CRC Laboratory Handbook which groups various chemicals in to 23 groups with examples and incompatible chemical groups. This chart is by no means complete but it will aid in making decisions about storage. For more complete information please refer to the MSDS for the specific chemical. | Group | Name | Example | Incompatible Groups | |---------|-----------------|--|--| | Group 1 | Inorganic Acids | Hydrofluoric acid | 2,3,4,5,6,7,8,10,13,14,16,17,18,19,21,22,23 | | | | Hydrogen chloride
Hydrogen fluoride | mana and the | | | | Nitric acid | and Fands of St. | | | | Sulfuric acid | Livers county | | | | Phosphoric acid | | | Group 2 | Organic acids | Acetic acid | 1,3,4,7,14,16,17,18,19,22 | | | | Butyric acid | STATE OF THE | | | | Formic acid | and the second s | | | | Propionic acid | and the self- | | Group 3 | Caustics | Sodium hydroxide | 1,2,6,7,8,13,14,15,16,17,18,20,23 | | | ļ | Ammonium hydroxide solution | BARLOSE B | | Group 4 | Amines and | Aminoethylethanolamine | 1,2,5,7,8,13,14,15,16,17,18,23 | | | Alkanolamines | Aniline | manus () unitarity (pt for) | | | | Diethanolamine | Agent of a production of the | | | | Diethylamine | second restal | | | | Dimethylamine | 10.13463 | | | | Ethylenediamine | and the second second | | | | 2-Methyl-5-ethylpyridine | Inches Company | | | | Monoethanolamine | | | | | Pyridine
Triethanolamine | hart care and a second second | | | | Triethylamine | | | | | Triethylenetetramine | A CARLET | | Group 5 | Halogenated | Allyl chloride | 124111417 | | Group 3 | Compounds | Carbon tetrachloride | 1,3,4,11,14,17 | | | Compounds | Chlorobenzene | The state of s | | | | Chloroform | | | | | Methylene chloride | Albert Wall | | | | Monochlorodifluoromethane | KIND OF TOUR | | | | 1,2,4-Trichlorobenzene | In Kills A | | | | 1,1,1-Trichloroethane | Section of Control | | | | Trichloroethylene | | | | | Trichlorofluoromethane | Many control of the second of | | Group 6 | Alcohols | | 1,7,14,16,20,23 | | 1 | | Butanol (iso, n, sec, tert) | 1,7,14,10,20,25 | | | | Diethylene glycol | The state of s | | | | Ethyl alcohol | the state of s | | | | Ethyl butanol | La serrado de la companya del companya de la companya del companya de la | | | | Ethylene glycol | and the state of t | | | | Furfuryl alcohol | make make a maker and tend of the con- | | | | Isoamyl alcohol
Methyl alcohol
Methylamyl alcohol
Propylene glycol | | |-------------|-------------------------------------|--|-------------------------------| | ALCO | 7 Aldehydes
Acetaldehyde | Acrolein Butyraldehyde Crotonaldehyde Formaldehyde Furfural Paraformaldehyde Propionaldehyde | 1,2,3,4,6,8,15,16,17,19,20,23 | | | 8 Ketones | Acetone
Acetophenone
Diisobutyl ketone
Methyl ethyl ketone | 1,3,4,7,19,20 | | Group | 9 Saturated
Hydrocarbons | Butane Cyclohexane Ethane Heptane Paraffins Paraffin wax Pentane Petroleum ether | 20 | | Group
10 | Aromatic
Hydrocarbons | Benzene
Cumene
Ethyl benzene
Naphtha
Naphthalene
Toluene
Xylene | 1,20 | | Group
1 | Olefins | Butylene 1-Decene 1-Dodecene Ethylene Turpentine | 1,5,20 | | Group
2 | Petroleum Oils | Gasoline
Mineral Oil | 20 | | Group
3 | Esters | Amyl acetate Butyl acetates Castor oil Dimethyl sulfate Ethyl acetate | 1,3,4,19,20 | | roup
4 | Monomers
Polymerizable
Esters | Acrylic acid
Acrylonitrile
Butadiene
Acrylates | 1,2,3,4,5,6,15,16,19,20,21,23 | | roup
5 | Phenols | Carbolic acid
Cresote
Cresols Phenol | 3,4,7,14,16,19,20 | | roup | Alkylene Oxides | Ethylene oxide | 1,2,3,4,6,7,14,15,17,18,19,23 | | 16 | | Propylene oxide | | |-------------|--------------|---|--------------------------------------| | Group
17 | Cyanohydrins | Acetone cyanohydrin
Ethylene cyanohydrin | 1,2,3,4,5,7,16,19,23 | | Group
18 | Nitriles | Acetonitrile
Adiponitrile | 1,2,3,4,16,23 | | Group
19 | Ammonia | Ammonium Hydroxide
Ammonium Gas | 1,2,7,8,13,14,15,16,17,20,23 | | Group
20 | Halogens | Chlorine
Fluorine | 3,6,7,8,9,10,11,12,13,14,15,19,21,22 | | Group
21 | Ethers | Diethyl Ether
THF | 1,14,20 | | Group
22 | Phosphorus | Phosphorus, Elemental | 1,2,3,20 | | Group
23 | | Acetic anhydride
Propionic anhydride | 1,3,4,6,7,14,16,17,18,19 |