Implications of monomer reactivity on formation of block copolymers:

\[\text{PMMA} - b - \text{PS} - b - \text{PMMA} \]

cannot use:

(a) \(\text{Li}^+ + \text{CH}_3\text{COOMe} \quad \text{b/c of attack at carbonyl} \)

(b) \(\text{Li}^+ + \text{PMMA} \quad \text{b/c MMA carbocation reactivity is too slow to initiate styrenic polymer} \)
(c) can use Na/naphthalene in polar solvent, e.g. THF

\[\text{Na}^+ + \text{e}^- \xrightarrow{2\text{eq}} \text{THF} \quad \text{Na}^+ \quad \text{e}^- \quad \text{green} \quad \text{e}^- \quad \text{Na}^+ \]

(showing all e^-s to keep track of them)

[Diagram of molecular structure]

bifunctional/bidirectional
initiator

\[\text{Na}^+ \xrightarrow{\text{CH-CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}} \]

\[m-2 \quad \text{Red} \]

[Diagram of molecular structure]

\[\text{Na}^+ \xrightarrow{\text{CH-CH}_2-\text{CH}_2-\text{CH}_2-\text{CH} \quad m-4 \quad \text{Na}^+} \]

\[2 \quad \text{Initiation + propagation of styrene} \]

[Diagram of molecular structure]

\[\text{to reduce attack of } \text{CO}_2 \]

[Diagram of molecular structure]

\[2 \quad \text{Initiation + propagation of MMA} \]

[Diagram of molecular structure]

\[\text{CH}_3\text{O-H} \quad \text{Termination} \]

[Diagram of molecular structure]

\[\frac{2}{\text{CH}_3\text{O}^+\text{Na}^+} \]

[Diagram of molecular structure]
How to prepare PS-6-PMMMA-6-PS?

1. Cannot use approach for PMMA-6-PS-6-PMMMA
 (bidirectional growth from center of structure)
2. Cannot polymer sequentially styrene, MMA, styrene
 insufficient reactivity to initiate styrene polymer.
3. Consider growth from both ends
 inward + coupling to core

PS-6-PMMMA-core-PMMMA-6-PS

Start here → growth → couple here → growth → start here

Example:

\[
\begin{align*}
\text{initiation} & \quad \text{propagation} \\
& \quad \text{termination + coupling to core}
\end{align*}
\]

Can see that growth begins from ends, proceeds inward +
terminate w/ coupling to core

In anionic polymer, ideally termination
occurs only when a terminator
is added intentionally

Remember:
Three mechanistic steps:
1) Initiation
2) Propagation
3) Termination
 (reversible vs. irreversible)
Dr. John Flood, Senior Scientist, at Kraton Polymers will host a technical presentation entitled, "New Durable Elastic Nonwoven Fabrics Using Styrene-Block Copolymers." Kraton's SBC technology enables the elastic nonwoven industry to manufacture durable and semi-durable elastic nonwoven materials that mimic textiles and also provides fabrics with flexibility, softness, drape, and durability. The presentation is scheduled during the morning session, between 8:30 am - 11:15 am. The paper was written in collaboration with Seong-Ho Shin of Baiksan Lintex CO., LTD, a leading fabric manufacturer based in Korea. For more information, please contact Stephanie Earley at stephanie.earley@kraton.com.

To learn more about Highly Modified Asphalt (HiMA), a new SBS polymer technology developed by Kraton Performance Polymers for asphalt paving, please visit us at booth # 132. We are also hosting a private technical seminar on "Next Generation In Asphalt Pavement Design" on March 20, 2013 at the Transamerica Expo Center, São Paulo. For information about this event, please contact Marta Afonso at marta.afonso@kraton.com.

Through our advanced polymer technology, we enable you to successfully deliver customized solutions for adhesion, nonwovens, and performance fabrics. Consider Kraton your global partner for innovation providing you the proven resources to grow your business. Let's work together to create breakthrough opportunities. To learn more about our products, please visit booth 1353.
Polystyrene-\(\text{b}\)-polybutadiene-\(\text{b}\)-polystyrene triblock copolymers (abbreviated SBS, developed by Shell Oil Company and manufactured by Kraton Polymers) are high performance elastomers. They obtain their properties by phase separation of the polystyrene and polybutadiene components into nanoscopic domains, whereby the glassy polystyrene acts as physical crosslinks for the rubbery polybutadiene.

(a) Polystyrene-\(\text{b}\)-polybutadiene-\(\text{b}\)-polystyrene can be synthesized either by sequential anionic polymerizations of styrene, butadiene and styrene followed by termination, or by sequential polymerizations of styrene and butadiene followed by coupling onto a bi-functional core. Draw the final structures that would result from each of those two techniques, represented by the following sequences of reactions (be certain to include all regiochemistries and stereochemistries for the butadiene repeat units, include brackets for the different block segments, parantheses for the copolymer segment, degrees of polymerization and chain ends): [30 points (15 pts/each)]

Sequential polymerization method

![Sequential polymerization diagram]

Coupling method

![Coupling method diagram]
Kraton Performance Polymers, Inc. (NYSE: "KRA"), a leading global producer of styrenic block copolymers and other engineered polymers is pleased to announce its sponsorship and participation in the "Advances in Materials and Processes for Polymeric Membrane Mediated Water Purification," workshop sponsored by the American Chemical Society (ACS). The event will be held at the Asilomar Conference Grounds in Pacific Grove, California from February 24-27, 2013.

KRATON PERFORMANCE POLYMERS TO SHOWCASE CARIFLEX™ POLYISOPRENE PRODUCTS, THE ULTIMATE NATURAL RUBBER ALTERNATIVE, AND KRATON™ ERS POLYMERS AS PROVEN ALTERNATIVES TO PVC IN MEDICAL APPLICATIONS, MD&M WEST, ANAHEIM CONVENTION CENTER, ANAHEIM, CA FEBRUARY 12-14, 2013

Kraton product experts will be available to discuss how Cariflex polyisoprene products are the ideal alternative to natural rubber for applications that demand extreme purity, exceptional protection, comfort, and consistently high quality. Cariflex products effectively serve medical market applications including surgical gloves, catheters, tube connectors, needle shields, medical stoppers, probe covers, and cohesive bandages. They offer a pure and versatile option for manufacturing applications that require the high tensile strength and tear resistance of natural rubber without the impurities that cause discoloration, odor, and allergic reactions.

KRATON PERFORMANCE POLYMERS PUBLICIZES LATEST ADVANCEMENTS IN NEW HSBC TECHNOLOGY FOR ADHESIVES AND SEALANTS

HOUSTON, Oct. 8, 2012 /PRNewswire/ -- Kraton Performance Polymers, Inc. (NYSE: "KRA"), a leading global producer of styrenic block copolymers or "SBCs," announces plans to showcase its latest advancements in adhesives and sealants at the 2012 ASC Adhesive & Sealant Council Fall Conference & Expo from October 21-23, 2012. The company is also scheduled to present a paper on new HSBC technology on Oct. 22, 2012 from 11:15 a.m. - noon.

Copyright © 2013, Kraton Performance Polymers Inc. All rights reserved.
Innovation

History of Innovation

Achievements

1960'S INVENTION AND THE FIRST MAJOR KRATON APPLICATION: FOOTWEAR

- In an attempt to increase the green strength of anionically polymerized polyisoprene in 1961, Kraton scientists discover that styrene block copolymers have unique thermoplastic and strength properties.
- In 1964, Kraton® D polymer (supplied from the pilot plant in Torrance, California) is formulated into leisure shoes which are lighter and which have improving traction compared to PVC. This launches the first major market for SBCs.
- In 1965 the first patent on unsaturated thermoplastic triblock copolymers is issued
- Kraton patents and develops the technology for hydrogenated Kraton rubber (Kraton G polymer), which increases the compatibility with polyolefins and oil for compounds while extending the UV and thermal stability of styrenic block copolymers.

http://www.kraton.com/innovation/history.php
In 1971 Kraton commercializes several Kraton D polymer grades from the new K-1 plant in Belpre, OH. Hydrogenated diblock copolymers are commercialized as a Viscosity Index improver in motor oil and justify the construction of the first large scale Kraton G plant in Belpre, OH (1974). Kraton launches a new hot melt pressure sensitive adhesive technology featuring SIS Kraton D polymers. Kraton is instrumental in forming the Tappi Hot Melt Adhesives Conference to create a forum for the industry to share hot melt adhesive technology.

1980'S BRINGING INNOVATION TO ROADS AND ROOFING WORLDWIDE

- Kraton D polymer is accepted globally as the preferred modifier for bitumen used in roofing products.
- Kraton D polymer is added to bitumen used in roads, increasing durability and improving rutting and low temperature cracking resistance. Kraton works closely with government agencies, industry forums, and customers to develop performance specifications for modified asphalts in roads.
- Functionalized block copolymers are patented and introduced in 1987 for impact modification of engineering thermoplastics.
- Kraton G compounds are used in elastic components of disposable diapers to provide comfort, stretch, and fit.

1990'S SOFT TOUCH TECHNOLOGY GAINS APPEAL

- "Soft touch" compounds based on Kraton rubber catch on for all types of end-use products including grips for sporting goods, power tools and personal care items.
- Kraton commercializes a series of high styrene SBS (75% styrene) for clear rigid packaging and polystyrene modification.
- Kraton introduces a latex version of anionically polymerized polyisoprene for glove and medical applications.

2000'S NEW INNOVATIONS, NEW GLOBAL STANDARD

- Kraton S polymer (S-I/B-S), a new product that extends the SIS polymer supply and provides unique adhesive properties, is introduced.
- A new family of SEBS polymers with an enhanced rubber midblock for improved compatibility and clarity with polypropylene is commercialized. These polymers are also very unique because of low hardness and low viscosity.
- Kraton offers more than 100 grades of elastomers and compounds made in 6 different plants around the world.

KRATON'S CORE VALUES

6. Results

"Making It Happen... Safely!"

http://www.kraton.com/innovation/history.php
Kraton Performance Polymers is the world’s leading producer of styrenic block copolymers, or SBCs. SBCs are highly-engineered synthetic elastomers, which are used in a wide variety of products to impart clarity, flexibility, resilience, strength, durability and processability. SBCs are a fast growing subset of the broader elastomers industry. We pioneered these products over 35 years ago and offer a broad line of SBCs to customers worldwide. In addition to medical applications, our products are used in a wide variety of applications including automotive applications, numerous consumer products (diapers, tool handles, razors), tapes, labels, packaging systems, road and roofing materials, and footwear products. We offer our customers a broad portfolio of products that includes more than 100 core commercial grades of SBCs.

Our polymers offer the following:

- USP Class VI Toxicology Requirements
- FDA Clearance
- Easy Processability
- Superior Toughness
- Clarity (pure and in blends)
- No Plasticizers

EO, EB and gamma sterilization are possible with the neat polymers. Steam sterilization is possible when the polymers are used in combination with other polymers, or in coextrusions. Grades are offered with high resilience, low compression set, good puncture and reseal properties and with no plasticizers needed.

COMPARATIVE PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Kraton Polymers</th>
<th>PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>0.90-1.05</td>
<td>1.05-1.45</td>
</tr>
<tr>
<td>Shore A</td>
<td>50-80</td>
<td>55-75</td>
</tr>
</tbody>
</table>

KRATON® G POLYMERS

Kraton G polymers are SBCs with a hydrogenated midblock. They are elastic and flexible with the additional benefits of enhanced oxidation and weather resistance, higher service temperatures, and increased processing stability. They provide formulation flexibility, ease of processing in commonly used thermoplastic technology, clarity in polyolefin blends, and offer such performance benefits as soft touch, improved grip, and UV stability. SEBS, SEPS, and SEP grades are also used for sealants and high performance adhesives.

<table>
<thead>
<tr>
<th>Kraton polymer grade</th>
<th>General use</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1650, G1651, G1657 and G2705</td>
<td>Formulations</td>
</tr>
<tr>
<td></td>
<td>Blends</td>
</tr>
<tr>
<td></td>
<td>Compounds</td>
</tr>
<tr>
<td>1403P, MD6459*, D2109, D2122, G2832 and MD6932 (new)*</td>
<td>Cast Film</td>
</tr>
<tr>
<td></td>
<td>Molding</td>
</tr>
<tr>
<td></td>
<td>Extrusion</td>
</tr>
<tr>
<td>New Grades Coming Soon</td>
<td>Blown Film</td>
</tr>
</tbody>
</table>

*MD grades will be listed in Drug Master File upon commercialization.

PRODUCTS

Kraton polymers are used as alternatives to PVC in the following applications:

- Bags - Sterile and Non Sterile
- Bedding Products
- Compression Devices
- Diagnostic Equipment
- Gloves
- Intravenous Products
- Medical Film
- Patient ID Bracelets
- Plastic Wrap
- Respiratory Therapy Products
- Shower Curtains
- Tubing

KRATON’S CORE VALUES

6. Results

“Making it Happen... Safely!”

4/4/2013
Many possible regio- and stereochemistries for isoprene polymer.

\[\text{1,2-} \quad \text{1,4-cis} \quad \text{1,4-trans} \]
\[\text{3,4-} \quad \text{H,1-cis} \quad \text{H,1-trans} \]

Indistinguishable most significant isomers
least sterically hindered attack
+ stabilized allylic
anion intermediate

\[\text{Li}^+ \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \text{CH}_3\text{OH} \]

Glossy
Rubbery

\[\text{PS} - b - \text{PI} - b - \text{PS} \]

Glassy

```
\[ \text{H}_2 \text{ cast. (hydrogenation)} \]
```

SBCs of hydrogenated midblock (e.g., Kraton & products)
- increases compatibility w/ polyolefins
 (polyethylene, polypropylene, etc.)
- oil
- extends UV & thermal stability
 (by removal of reactive alcohol groups)
Cariflex™
Polyisoprene Products

The perfect balance of comfort, purity and strength in a natural rubber alternative.
Cariflex™ polyisoprene products are the ideal alternative to natural rubber for applications that demand extreme purity, exceptional protection and consistently high quality.

Cariflex products offer a pure and versatile option for manufacturing applications that require the high tensile strength and tear resistance of natural rubber without the impurities that cause discoloration, odor and allergic reactions.

Available in solid rubber or latex form, Cariflex products are a clean, high-performance alternative for medical supplies, consumer products and a myriad of other industrial applications.

When you need extreme purity, protection and performance, consider Cariflex products.
Products and Grades

Solid Rubber
- Manufactured in Belpre, Ohio
- Shipped in 25-kg bales (55 pounds)
- Available in two grades: IR030 and IR0310

With different molecular weight distributions, each grade performs differently during processing. Your Cariflex IR sales manager can assist you in selecting the grade that is best suited to your equipment and manufacturing processes.

Polyisoprene Latex
- Produced in Brazil and Japan
- Shipped in 200-liter (55 gallon) steel drums or 1,050-liter (275 gallon) IBC tote containers
- Available in two interchangeable grades: IR0401 BU (Brazil) and IR0401 SU (Japan)

Simply Better
Cariflex derives its inherent purity from our simple and highly efficient polymerization process. We are the only company in the world using an anionic solution polymerization process to produce this type of synthetic rubber. To further enhance quality and ensure its stability, the latex is pasteurized before shipment.

Compare Your Options, and Choose Cariflex™ Products

Cariflex products are superior, in many respects, to both natural rubber and synthetics produced using titanium/aluminum catalysts. Commonly known as Ziegler-Natta, catalysts of this type leave higher levels of metal residue in the rubber, resulting in a yellowish color and reduced stability that must be addressed by adding substantial levels of antioxidants. Ziegler-Natta catalysts also produce a significant amount of "gel" particles that can have an adverse effect on product quality.

Comparison between Cariflex IR, polyisoprene produced in “Ziegler-type” process, and Natural Rubber (NR)

<table>
<thead>
<tr>
<th></th>
<th>Cariflex IR</th>
<th>Ziegler IR</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-cis content (%)</td>
<td>91</td>
<td>>96</td>
<td>>98</td>
</tr>
<tr>
<td>1,4-trans content (%)</td>
<td>1.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>3,4-vinyl content (%)</td>
<td>6.5</td>
<td>3.5</td>
<td>2</td>
</tr>
<tr>
<td>Macrostructure</td>
<td>linear</td>
<td>branched</td>
<td>branched</td>
</tr>
<tr>
<td>Mw distribution</td>
<td>narrow</td>
<td>broad</td>
<td>very broad</td>
</tr>
<tr>
<td>Green strength</td>
<td>low/medium</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Gel content</td>
<td>zero</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Ash</td>
<td>low</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Trace metals (ppm)</td>
<td><70</td>
<td>400-3,000 (incl. Al)</td>
<td>1,000</td>
</tr>
<tr>
<td>LVN (dl/g)</td>
<td>6-10</td>
<td>2.5-4.5</td>
<td>6-7</td>
</tr>
<tr>
<td>Mw (kg/mol)</td>
<td>2,000</td>
<td>1,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Mooney viscosity (MU)</td>
<td>40-80</td>
<td>60-90</td>
<td><120</td>
</tr>
<tr>
<td>Flow (of compound)</td>
<td>excellent</td>
<td>good</td>
<td>medium/good</td>
</tr>
<tr>
<td>Color</td>
<td>white/clear</td>
<td>yellow/amber</td>
<td>dark</td>
</tr>
<tr>
<td>Smell</td>
<td>very low/low</td>
<td>low/medium</td>
<td>variable</td>
</tr>
</tbody>
</table>

Applications

Medical
- Surgical gloves
- Catheters
- Tube connectors
- Needle shields
- IV bag and medical bottle stoppers
- Cohesive bandages

Consumer and Industrial
- Electronics
- Condoms
- Footwear
- Food packaging adhesives
- Paint additives
- Resins
Company Profile

Cariflex™ products are manufactured by Kraton Polymers, a leading global producer of engineered polymers used to enhance the performance of products that touch virtually every aspect of our lives. The original inventor of styrenic block copolymer (SBC) chemistry in the 1960s, Kraton has a history of innovation dating back almost 50 years. Used in a myriad of applications, Kraton adds utility, value and customer appeal to products ranging from adhesives and coatings, paving and roofing to personal care items, medical supplies, electronic and automotive components. Kraton offers approximately 800 products to more than 700 customers in over 60 countries worldwide. Dedicated to "Giving Innovators Their Edge," we also collaborate with manufacturers on custom solutions to specific needs.

Supply and Distribution

In response to strong and growing demand for Cariflex products, we have expanded both our U.S. plant in Ohio where Cariflex polyisoprene rubber is manufactured, and our Cariflex polyisoprene latex production facility in Brazil. With significantly increased capacity and an unmatched global service network, you can be assured of secure supplies and prompt shipment anywhere in the world.

Global Distribution

U.S.A. Headquarters
Kraton Polymers U.S. LLC
15710 John F. Kennedy Blvd.
Suite 300
Houston, Texas 77032
+1-800-4-KRATON (572866)
info@kraton.com

Asia Pacific
Kraton Polymers Asia Pacific
Rm 1601-03, Plaza 66, Phase 2
1266 West Nanjing Road
Shanghai 200040, China
+86 21 6289 6161

Europe, Middle East, Africa
Kraton Polymers Europe
John M. Keynesplein 10
NL – 1066 EP Amsterdam
The Netherlands
+31 (0)20 201 7697

South America
Kraton Polymers South America
Av. Roberto Simonsem, 1500
13140-000 - Paulinia - SP, Brazil
+55 19 3874 7270
Backup Tel: +55 19 3874 7272
All Other Request Tel: +55 19 3874 7244

Legal Disclaimer:

We believe the information set forth above to be true and accurate, but any recommendations, presentations, statements or suggestions that may be made in the foregoing text are without any warranty or guarantee whatsoever, and shall establish no legal duty on the part of Kraton Polymers LLC or any of its affiliates. Furthermore, nothing set forth above shall be construed as a recommendation to use any product in conflict with any existing patent rights. Kraton Polymers LLC expressly disclaims any and all liability for any damages or injuries arising out of any activities relating in any way to this publication.

Cariflex™ is a trademark of Kraton Polymers. Kraton and the Kraton logo are registered trademarks owned by Kraton Polymers LLC.
Giving Innovators Their Edge is a registered service mark owned by Kraton Polymers LLC.

© Kraton Polymers LLC – 2011. All rights reserved.