Structural Determinants for the Stereoselective Hydrolysis of Chiral Substrates by Phosphotriesterase†

Ping-Chuan Tsai,§ Yubo Fan,§ Jungwook Kim,¹ Li-Jiang Yang,§ L Steven C. Almo,§ Y Qin Gao,§ L Steven C. Almo,§ and Frank M. Raushel*§

§Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, and ¹Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 ²Current address: Beijing National Laboratory of Molecular Sciences and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Received July 1, 2010; Revised Manuscript Received August 6, 2010

ABSTRACT: Wild-type phosphotriesterase (PTE) preferentially hydrolyzes the R_P enantiomers of the nerve agents sarin (GB) and cyclosarin (GF) and their chromophoric analogues. The active site of PTE can be subdivided into three binding pockets that have been denoted as the small, large, and leaving group pockets based on high-resolution crystal structures. The sizes and shapes of these pockets dictate the substrate specificity and stereoselectivity for catalysis. Mutants of PTE that exhibit substantial changes in substrate specificity and the ability to differentiate between chiral substrates have been prepared. For example, the G60A mutant is stereoselective for the hydrolysis of the R_P enantiomer of the chromophoric analogues of sarin and cyclosarin, whereas the H254G/H257W/L303T (GWT) mutant reverses the stereoselectivity for the enantiomers of these two compounds. Molecular dynamics simulations and high-resolution X-ray structures identified the correlations between structural changes in the active site and the experimentally determined kinetic parameters for substrate hydrolysis. New high-resolution structures were determined for the H257Y/L303T (YT), I106G/F132G/H257Y (GGY), and H254Q/H257F (QF) mutants of PTE. Molecular dynamics calculations were conducted using the S_P and R_P enantiomers of the analogues for sarin and cyclosarin for the wild-type PTE and the G60A, YT, GGY, QF, and GWT mutants. The experimental stereoselectivity correlated nicely with the difference in the computed angle of attack for the nucleophilic hydroxide relative to the phenolic leaving group of the substrate.

Phosphotriesterase (PTE),¹ isolated originally from soil microbes, catalyzes the hydrolysis of a wide range of organophosphorus esters, including agricultural insecticides and chemical warfare agents (1, 2). The X-ray crystal structure of [Zn$^{2+}$/Zn$^{2+}$]PTE reveals a homodimeric (β/α_2)-barrel structural fold with a binuclear metal center in the active site (3). The two zinc ions are bridged by a hydroxide and a carbamate functional group, formed by the reaction of CO$_2$ with the e-amino group from an active site lysine residue (4). X-ray crystal structures from the Holden laboratory, determined in the presence of inhibitors, have identified three binding pockets that facilitate the association of substrates with the PTE active site (3). These subsites have previously been denoted as the small, large, and leaving group pockets and are defined by the space enclosed by the side chains of Gly-60, Ile-106, Leu-303, and Ser-308; side chains of His-254, His-257, Leu-271, and Met-317; and side chains of Trp-131, Phe-132, Phe-306, and Tyr-309, respectively (3).

A three-dimensional representation of the PTE active site is presented in Figure 1.

Wild-type PTE is stereoselective for the hydrolysis of chiral organophosphorus esters (5–8). The degree of stereoselectivity for the wild-type enzyme depends on the size of the substituents attached to the central phosphorus core. For example, the value of k_{cat}/K_m for wild-type PTE with the R_P enantiomer of compound 1 (a chromophoric analogue of the nerve agent sarin or GB) is 22-fold larger than that for the corresponding S_P enantiomer (9). The enantiomeric preference increases to 760 for the hydrolysis of the R_P and S_P enantiomers of compound 2 (an analogue for the nerve agent cyclosarin or GF). The mutation of Gly-60 to alanine results in a substantial enhancement in the relative stereoselectivity for the R_P enantiomers of compounds 1 and 2 (9). Rational engineering of PTE, through enlargement of the small pocket and reduction of the large pocket, can invert the inherent enantioselectivity of the wild-type enzyme for the hydrolysis of chiral organophosphonates (10). The relative values of k_{cat}/K_m for the R_P and S_P enantiomers of compounds 1 and 2 (Scheme 1) are graphically illustrated in Figure 2 for specific mutants of PTE. Wild-type PTE and the G60A mutant preferentially hydrolyze the R_P enantiomers of compounds 1 and 2 when compared to the corresponding S_P enantiomers, whereas H254G/H257W/L303T (GWT), H257Y/L303T (YT), and I106G/F132G/H257Y (GGY) prefer the S_P enantiomers. The H254Q/H257F (QF) mutant is not stereoselective for the hydrolysis of compound...
1, but this mutant enzyme preferentially hydrolyzes the \(R_P \) enantiomer of compound 2.

The stereoselective properties of PTE can be manipulated through the mutation of residues in the active site (8–11). What is needed is a physical explanation that is able to correlate changes in the observed kinetic constants with specific changes in the three-dimensional structure. Molecular dynamics simulations have been utilized to probe for correlated changes in three-dimensional structure and catalysis. For example, the wild-type lipase from *Pseudomonas aeruginosa* has no preference for the hydrolysis of either the \(R \) or \(S \) enantiomers of 2-methyldecanoic acid esters. However, lipase variants, mutated through directed evolution, were found to have an increased chiral selectivity toward the \(S \) enantiomer, and molecular dynamics simulations have been conducted on the wild-type and mutant enzymes (12).

The active site of epoxide hydrolase from *Aspergillus niger* has been redesigned, and the catalytic preference for the \(S \) enantiomer of glycidyl phenyl ether increased from 5- to 115-fold. The wild-type enzyme and a series of mutant enzymes with enhanced enantioselectivity were investigated using molecular dynamics simulations and molecular docking techniques (13).

The X-ray crystal structures of wild-type PTE and five mutants have been determined to high resolution. These structures were used as the starting point for molecular dynamics simulations with the \(R_P \) and \(S_P \) enantiomers of compounds 1 and 2 using the AMBER suite of programs. The binding poses of each enantiomer within these proteins support the experimentally observed stereoselectivity for substrate hydrolysis (9). These efforts demonstrate that MD simulations can facilitate the design of modified enzymes with enhanced catalytic activities for specific substrates.

MATERIALS AND METHODS

Protein Purification, Crystallization, and X-ray Structure Determination. The QF, GGY, and YT mutants of PTE were expressed and purified to homogeneity as described previously (8, 9). The QF mutant was crystallized by sitting-drop vapor diffusion at 21 °C after mixing 1.0 \(\mu \)L of protein with 1.0 \(\mu \)L of the reservoir solution [0.1 M Bis-Tris (pH 6.5) and 20% PEG MME 5000] and equilibrating over 0.1 mL of the reservoir solution. X-ray data were collected on an R-Axis IV+ image plate detector using Cu K\(\alpha \) radiation from a Rigaku RU-H3R X-ray generator and processed using HKL2000 (14). The QF crystal exhibited diffraction consistent with space group \(P_1 \). There was a single homodimer of QF in the asymmetric unit. The GGY mutant was crystallized by hanging-drop vapor diffusion at 21 °C by mixing 1.0 \(\mu \)L of protein with 1.0 \(\mu \)L of reservoir solution [0.2 M zinc acetate, 0.1 M sodium cacodylate (pH 6.5), and 12% PEG MME] and equilibrating over 1.0 mL of the reservoir solution. X-ray data were collected on the ADSC QUANTUM 210 CCD detector at NSLS beamline X6A. The crystal exhibited diffraction consistent with space group \(P_1 \) with two homodimers in the asymmetric unit. The YT mutant was crystallized by hanging-drop vapor diffusion at 21 °C by mixing 1.0 \(\mu \)L of protein with 1.0 \(\mu \)L of reservoir solution [0.1 M Bis-Tris (pH 6.5) and 12% PEG MME 5000] and equilibrating over 1.0 mL of the reservoir solution. X-ray data were collected on the ADSC QUANTUM 315 CCD detector at NSLS beamline X29A. The crystal exhibited diffraction consistent with space group \(P1 \) with one homodimer in the asymmetric unit.

The structures of the three mutants were determined by molecular replacement using MOLREP with PDB entry 1P6B as the initial search model (15). Solvent water molecules were built using Arp/wArp (16). All subsequent model building and refinement was conducted with Coot (17) and REFMAC5 (18) for the QF and GGY mutants or SHELXL (19) for the YT mutant. The final models were refined to 1.80, 1.64, and 1.04 Å.
for the QF, GGY, and YT mutants, respectively. The data collection and refinement statistics are listed in Table 1.

Computational Details. Chain A in the X-ray crystal structures of PTE, including the wild-type protein (PDB entry 1EZ2), G60A (PDB entry 3CS2), YT (PDB entry 2O3B), GWT (PDB entry 1P6C), QF (PDB entry 2OQL), and GGY (PDB entry 2O4M), was used for the molecular dynamics simulations with the R_T and S_T enantiomers of 1 and 2 in the active site. The conformations of the amino acid side chains with the highest occupancy were used for the simulations if there were more than one available in the crystal structure. All waters interacting with chain A were kept for the simulations. For the two structures (PDB entries 3CS2 and 2O4M) in which cacodylate was bound in the active site instead of the bridging hydroxide, the active sites were aligned with that of wild-type PTE (PDB entry 1EZ2), the cacodylate was removed, and hydroxide was added between the two Zn$^{2+}$ ions accordingly. The Co$^{2+}$ ions in the active site of G60A in the structure depicted by PDB entry 3CS2 were replaced with Zn$^{2+}$ ions in the computation. The substitution of Co$^{2+}$ in the active site of PTE for Zn$^{2+}$ does not significantly affect the kinetic constants or the overall structure of the active site (2).

The geometries of the analogues were fully optimized at the level of B3LYP (20-22)/6-31++G(d,p') (23-25), and the charge distribution on each atom in these molecules was computed using the RESP-fit method at the level of B3LYP/cc-pVTZ (26) with the solvent effect ($\epsilon = 4$) included using the polarizable continuum model (PCM) (27-29). The force field for Zn$^{2+}$ and the charge distributions for the four Zn-coordinating histidines (His-55, His-57, His-201, and His-230), the carboxylated lysine (Lys-169), and hydroxide were developed by Pang (30). The side chains of the Zn-coordinating histidines were fully deprotonated and modeled as imidazolates (30). His-254 was assigned as the protonated form, while all of the remaining histidines were kept neutral with N$^+$ protonated. The aspartate and glutamate residues (Asp-100, Asp-105, Asp-253, and Glu-56) were kept neutral to compensate for the deprotonation of the Zn-coordinating histidines. In the mutant enzymes, the corresponding histidines to compensate for the deprotonation of the Zn-coordinating residues (Asp-100, Asp-105, Asp-253, and Glu-56) were kept neutral.

All operations were processed using the AMBER 9 Leap module (32), which led to a total of 72 systems (six enzymes with two chiral substrates and three different initial poses for each enantiomer) solvated with 7400-8000 water molecules. The systems were further extended using the periodic boundary condition. Amber force field 99 (33) with the reoptimized parameters for the peptide backbone (34) was utilized for all amino acid residues and the hydroxide ion, while the general AMBER force field was used for the substrates. MD simulations were conducted at 300 K and 1 atm. The SHAKE algorithm (35) was used to constrain all bonds involving hydrogens. A 10 Å cutoff was applied for nonbonding interactions. The particle mesh Ewald method was employed in order to treat the long-range electrostatic interactions (36, 37).

Table 1: Data Collection and Refinement Statistics for the QF, GGY, and YT Mutants of PTE

<table>
<thead>
<tr>
<th></th>
<th>H254Q</th>
<th>H257F</th>
<th>H106G/F132G</th>
<th>H257Y</th>
<th>L303T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H254Q</td>
<td>H257F</td>
<td>H106G/F132G</td>
<td>H257Y</td>
<td>L303T</td>
<td></td>
</tr>
<tr>
<td>no. of observed reflections</td>
<td>49147</td>
<td>155682</td>
<td>235873</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of protein non-hydrogen atoms</td>
<td>5174</td>
<td>10277</td>
<td>5178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of water molecules</td>
<td>700</td>
<td>1636</td>
<td>855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{work}</td>
<td>0.146</td>
<td>0.189</td>
<td>0.105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{free}</td>
<td>0.189</td>
<td>0.244</td>
<td>0.127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>average B factor (Å2)</td>
<td>14.48</td>
<td>19.87</td>
<td>9.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>root-mean-square deviation from ideal geometry</td>
<td>0.013</td>
<td>0.016</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bond lengths (Å)</td>
<td>1.4</td>
<td>1.6</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bond angles (deg)</td>
<td>1.4</td>
<td>1.6</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MD trajectories were obtained on these structures using the AMBER suite of programs. Two steps of minimization were conducted before MD simulations. During the minimization, the systems were first optimized for 1000 cycles while the backbone of the protein was frozen with a force constant of 500.0 kcal mol$^{-1}$ Å$^{-2}$. The systems were further optimized for 2500 cycles without restraints, followed by a 20 ps MD simulation of heating the system from 0 to 300 K, with a force constant of 10.0 kcal mol$^{-1}$ Å$^{-2}$ upon all peptide backbone atoms. During the MD simulations, the distance between the oxygen of the P=O moiety and Zn$^{2+}$ was kept at 2.2 Å with a force constant of 100.0 kcal mol$^{-1}$ Å$^{-2}$. This restraint allows the substrates to interact with the residues in the
three subsites and for the phosphonate core to bind directly to Zn$_{\beta}$ prior to hydrolysis. In addition, for many of the disfavored binding states, the substrates would dissociate into the bulk solution in the absence of this restraint because of large unfavorable steric effects. Because the ligands were manually added to the active sites, many disfavored interactions to the protein overwhelmed the binding between the phosphonate core and Zn$_{\beta}$ in the initial geometries not only for the favored structures but also for the disfavored ones. Therefore, it would not be possible to compare the disfavored complexes to the more favored states. At a distance (d_{ZnO}) of 2.2 Å, all of the steric effects between the substituents from the substrates are similar to those that would occur prior to hydrolysis, and thus, the overall comparison of the various structures becomes more reasonable. The binding energies computed with this restraint are not very meaningful because the energy contributions from the Zn$_{\beta}$–O distance restraint vary for the mutants and the initial binding poses.

In the first nanosecond of relaxation, the O–P–X angle, where O is the oxygen of the bridging hydroxide, P is the phosphorus of the phosphonate ester, and X is one of the three possible singly bonded atoms attached directly to the phosphorus core, was set to 180° with a restraining force constant of 100.0 kcal mol$^{-1}$ deg$^{-2}$. The restraining force was released after the relaxation. The equilibrium structure without the angle restraint should be similar to the bound substrate complex prior to attack by the bridging hydroxide. The productive conformations in our simulations are close to the near attack conformers (NAC) defined by Bruice (38). The O–P–X angles are defined as \angle_{LA}, \angle_{AM}, and \angle_{LM}, where L, A, and M are the phenolate oxygen in the p-acetophenone leaving group, the alkoxide oxygen of the isopropyl or cyclohexyl substituent, and the methyl carbon, respectively, for compounds 1 and 2. The distance between Zn$_{\beta}$ and the phosphoryl oxygen of the substrate is defined as d_{ZnO}, while the distance between the phosphorus and the bridging hydroxide oxygen is defined as d_{PO}. Data were collected every 0.5 ps in continuous trajectories until the system reached equilibrium. The lengths of the trajectories varied from 10 to 25 ns. The last 5 ns of the equilibrated trajectories was utilized for structural analyses.

RESULTS AND DISCUSSION

Three-Dimensional Structures of QF, GGY, and YT. The three-dimensional structures of QF, GGY, and YT are nearly identical to that of the wild-type enzyme. In the QF and YT structures, one homodimer was found in the asymmetric unit and two metal atoms are located in the active site, bridged by a water molecule or hydroxide. The crystals of GGY contained two homodimers in the asymmetric unit, but cacodylate is bound between the two active site metal ions instead of hydroxide in all four subunits (data not shown). Cacodylate was included in the crystallization solution, and the binding mode for this compound in the active site is similar to that observed previously in the structure of the G60A mutant (39). Crystals of the YT mutant exhibited outstanding X-ray diffraction; the data were collected and processed to 1.04 Å. The high-resolution data enabled anisotropic temperature factor refinements and yielded a model with R_{work} and R_{free} values of 0.105 and 0.127, respectively. An example of the $2F_o - F_c$ electron density map around the binuclear metal center is shown in Figure 3.

Comparison of Active Site Structures. The active site structures of wild-type PTE and the five mutant enzymes (G60A, YT, GWT, QF, and GGY) that have been determined by X-ray crystallography are shown in Figure 4A–F. Superposition of the Ca atoms of the five mutant enzymes with those of wild-type PTE gives root-mean-square deviations for G60A, YT, GWT, GGY, and QF of 0.36, 0.51, 0.42, 0.36, and 0.55 Å, respectively. The mutations that have been introduced into the active site of PTE do not, therefore, significantly change the backbone conformation of the protein, including those regions near the active site. The crystal structures of PTE reveal that the small binding pocket is the most isolated from the external environment compared to the large and leaving group pockets. The large binding pocket is formed by His-254, His-257, Leu-271, and Met-317, but overall, this pocket is accessible to solvent molecules. The leaving group pocket is even more exposed to solvent than the large binding pocket.

The impact of the mutations on the structure of the substrate binding pocket is readily detectable in some instances, as in the structure of GGY (Figure 4C). The replacement of Ile-106 with glycine clearly enlarges the small binding pocket compared to that of the wild-type enzyme, consistent with the observed kinetic results demonstrating that GGY favors the hydrolysis of the S_p enantiomers over the R_p enantiomers. For G60A, the methyl substitution reduced the size of the small binding pocket (Figure 4B), and the preference for the R_p enantiomer is enhanced relative to that of the wild-type enzyme. In some cases, however, the structural changes are somewhat ambiguous, as observed with the H254Q mutation of the QF mutant (Figure 4F). The net effect of the H254G mutation in the GWT mutant is not intuitively clear, because the mutation actually increases the size of the large binding pocket (Figure 4E). The GWT mutant exhibits an inverted stereoselectivity relative to that of the wild-type enzyme and hydrolyzes S_p-1 and S_p-2 more effectively than the two R_p enantiomers. The replacement of the adjacent His-257 with tryptophan may have compensated for the changes caused by the H254G mutation.

Mechanism of Action for Substrate Hydrolysis by PTE. A comprehensive reaction mechanism for the hydrolysis of organophosphates by PTE has been proposed (40). In this mechanism, the substrate binds in the active site via an initial interaction of the phosphoryl oxygen with M$_{\beta}$. The bridging hydroxide subsequently attacks the phosphorus center, and the leaving group departs via the formation and/or breakdown of a
trigonal bipyramidal transition state. This mechanism is consistent with the net inversion of stereochemistry with chiral phosphate substrates (41). X-ray crystal structures of bound substrate analogues show that the phosphoryl oxygen electrostatically interacts with Mβ (42). In addition, the kinetic constants for the hydrolysis of phosphate and thiophosphate esters indicate that the PdO bond is polarized in the transition state by a direct interaction with Mβ (43). Finally, the three-dimensional structure of diethyl phosphate bound to PTE shows that the hydrolysis product bridges the two divalent cations in the active site and displaces the bridging hydroxide (39). On the basis of these experimental observations, the optimal substrate binding pose is one in which the angle of attack by the bridging hydroxide, relative to the leaving group, is ~180°/C176, and the phosphoryl oxygen is positioned to interact with Mβ. In this pose, the angle from the attacking hydroxide to the other two substituents is ~70° (180° ~ 110°).

Initial Geometries of Bound Substrates for MD Simulations. Models of the productive binding modes for the Rp and Sp enantiomers of 1 and 2 with PTE are graphically depicted in Figure 5 and designated as Rl and Sl, respectively. In these initial poses, the phenolate substituent is placed in the leaving group pocket while the methyl and O-alkyl groups are positioned in either the small or large pocket, depending on the absolute stereochemistry of the substrate. The four nonproductive binding modes include orientations in which either the methyl or O-alkyl group is positioned within the leaving group pocket at an initial angle of ~180° relative to the attacking hydroxide. These poses have been designated as RA, RM, SA, or SM, depending on which one of the substituents is positioned within the leaving group pocket. Because compounds 1 and 2 are chiral, there are a total of 12 initial poses for each of the six enzymes to be evaluated. At the termination of the simulations, the angles from each of the three substituents to the attacking hydroxide and the distances from phosphorus to the hydroxide and from Mβ to the phosphoryl oxygen were averaged. The distances (dPO and dZnO) and angles (Aα, Aλ, and Aμ) are defined as shown in Scheme 2. AL represents the angle from the attacking hydroxide
to the leaving group phenol through the phosphorus. A_A is the angle from the hydroxide to the O-alkyl group, and A_M is the angle to the methyl substituent. The value of d_{PO} is defined as the distance between the bridging hydroxide and the phosphorus atom of the substrate. The value of d_{ZnO} is the distance between the phosphoryl oxygen and M_{β}.

The values of A_L for the three initial binding poses for R_P with wild-type PTE are listed in Table 2. Representative images of the enzyme–substrate complexes after the MD simulations are shown in panels A and B of Figure 7 for R_P–1 and S_P–1 and panels C and D of Figure 7 for R_P–2 and S_P–2, respectively. With R_P–1, for the initial pose R_A the leaving group is not in an appropriate orientation relative to the attacking hydroxide. In this structure, the leaving group moves to the large pocket, although the phosphonate core does not rotate significantly relative to the initial geometry. Snapshots selected from the trajectories during the last 5 ns of simulations were used to estimate the average deviations from the initial poses. The angles (A_L) and distances (d_{PQ}) in these snapshots were subsequently used to assess the relative reactivities of the various complexes.

Scheme 2: Definition of Angles A_L, A_M, and A_N and Distances d_{PO} and d_{ZO}

Figure 5: Cartoon representations for the initial binding poses for the R_P and S_P enantiomers of compounds 1 and 2 in the active site of PTE. Each enzyme–substrate complex was oriented to have three different initial binding poses during the MD simulations. The binding poses that place the p-acetyl phenol group, the O-R group, and the methyl substituent toward the leaving group pocket for the R_P substrate–enzyme complexes are denoted as R_{PL}, R_{PA}, and R_{PM}, respectively. The binding poses that have the p-acetyl phenol group, the O-R group, and the methyl substituent toward the leaving group pocket for the S_P substrate–enzyme complex are denoted as S_{SL}, S_{SA}, and S_{SM}, respectively.

Figure 6: Changes in the value of the A_L angles for the R_L (black), R_A (red), and R_M (blue) initial binding poses during MD simulation for R_P–1 with wild-type PTE.
observed in the MD simulations for the small binding pocket, a conformational change was readily occur. From the three initial binding complexes, the best final orientation with an A value of 3.4 Å. Therefore, the initial binding pose of compound 1 is most optimal in leading to productive hydrolysis of R_P.

Consistent with these results, the computed values for S_L for compound 103 $/C_{176}$ and 104 $/C_{176}$ are not identical. These results are fully consistent with the observed enhancement in the ratio of hydrolysis of the R_P and S_P enantiomers relative to that of the wild-type enzyme. G60A catalyzes the hydrolysis of the R_P enantiomer 84-fold faster than the S_P enantiomer.

For compound 2, the initial R_L pose is the only one that results in a suitable angle of attack A_1 (162°) for the bridging hydroxide (Table 4). In addition, the distance (d_{PO}) between the bridging hydroxide and the phosphorus center is shorter by 0.3 Å (3.5 Å vs 3.8 Å). Therefore, the values for A_1 and d_{PO} are more optimal for the hydrolysis of R_P-2 than for S_P-2 for an in-line S_N-2-like reaction mechanism. In the MD simulations, the conformational change from S_M to S_L was not observed in the analysis of S_P-2. The larger size of the cyclohexyl group over the isopropyl group apparently prevents the conformational change from rotating to an S_L-like conformation during the simulation.

Molecular Dynamics Simulations with the G60A Mutant. During the simulations, the initial R_L pose changes to an R_L-like one because of the enhanced mismatch of the bulky leaving group and the reduced size of the small pocket. For the R_L and S_L poses, the angle A_1 for the R_P enantiomer is greater than that for the S_P enantiomer by 40° (Table 3). The distance d_{PO} for the R_P enantiomer is shorter than that for the S_P enantiomer by 0.6 Å. These results are fully consistent with the observed enhancement in the ratio of hydrolysis of the R_P and S_P enantiomers relative to that of the wild-type enzyme. G60A catalyzes the hydrolysis of the R_P enantiomer 84-fold faster than the S_P enantiomer.

For compound 2, the initial R_L pose is the only one that results in a suitable angle of attack A_1 (162°) for the bridging hydroxide (Table 4). In addition, the distance (d_{PO}) between the bridging hydroxide and the phosphorus center is the shortest for this pose. The A_1 angles for the five other initial poses are all smaller than 103° (see Tables S1–S5 of the Supporting Information). The reduced small pocket strongly disfavors the binding of either the p-acetylphenol leaving group or the cyclohexyl substituent. Because of steric repulsion between the cyclohexyl group and the small pocket, the initial S_L pose changes to the S_A pose during the MD simulation. The large difference in the computed value of A_1 for R_L relative to S_L (84°) is consistent with the substantial difference in rates for the hydrolysis of the R_P and S_P enantiomers of compound 2 by the G60A mutant.

Molecular Dynamics Simulations with GWT, YT, and GGY. The GWT, YT and GGY mutants favor the hydrolysis of the S_P enantiomer of 1. The stereoselectivity of these mutants is thus inverted relative to that of the wild-type enzyme. Consistent with these results, the computed values for A_1-(R_P-S_P) with compound 1 are reversed relative to those of wild-type PTE, although the values (−2, −6, and 0 for GWT, YT, and

Table 2: Structural Parameters for the Complexes between Wild-Type PTE and the R_P and S_P Enantiomers of 1 and 2

<table>
<thead>
<tr>
<th>substrate</th>
<th>parameter</th>
<th>R_L</th>
<th>R_A</th>
<th>R_M</th>
<th>S_L</th>
<th>S_A</th>
<th>S_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>compound 1</td>
<td>A_L</td>
<td>160 ± 6</td>
<td>111 ± 10</td>
<td>74 ± 6</td>
<td>140 ± 6</td>
<td>68 ± 5</td>
<td>142 ± 9</td>
</tr>
<tr>
<td></td>
<td>A_A</td>
<td>70 ± 5</td>
<td>137 ± 10</td>
<td>96 ± 4</td>
<td>90 ± 11</td>
<td>160 ± 8</td>
<td>104 ± 10</td>
</tr>
<tr>
<td></td>
<td>A_M</td>
<td>95 ± 7</td>
<td>70 ± 5</td>
<td>164 ± 5</td>
<td>95 ± 16</td>
<td>90 ± 7</td>
<td>75 ± 7</td>
</tr>
<tr>
<td></td>
<td>d_{PO}</td>
<td>3.4 ± 0.1</td>
<td>3.5 ± 0.1</td>
<td>3.6 ± 0.1</td>
<td>3.8 ± 0.2</td>
<td>3.4 ± 0.1</td>
<td>3.6 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>d_{ZnO}</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>compound 2</td>
<td>A_L</td>
<td>156 ± 6</td>
<td>75 ± 7</td>
<td>108 ± 8</td>
<td>143 ± 8</td>
<td>64 ± 6</td>
<td>95 ± 6</td>
</tr>
<tr>
<td></td>
<td>A_A</td>
<td>67 ± 6</td>
<td>159 ± 7</td>
<td>78 ± 4</td>
<td>101 ± 9</td>
<td>149 ± 6</td>
<td>94 ± 4</td>
</tr>
<tr>
<td></td>
<td>A_M</td>
<td>100 ± 7</td>
<td>87 ± 8</td>
<td>146 ± 7</td>
<td>80 ± 8</td>
<td>110 ± 7</td>
<td>148 ± 5</td>
</tr>
<tr>
<td></td>
<td>d_{PO}</td>
<td>3.5 ± 0.1</td>
<td>3.4 ± 0.2</td>
<td>3.8 ± 0.1</td>
<td>3.8 ± 0.2</td>
<td>3.6 ± 0.2</td>
<td>4.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>d_{ZnO}</td>
<td>2.1 ± 0.1</td>
</tr>
</tbody>
</table>

Figure 7: Orientation of the R_P and S_P enantiomers of compounds 1 and 2 with wild-type PTE determined from the MD simulations. (A) R_L for compound 1. (B) S_L posed for compound 1. (C) R_L posed for compound 2. (D) S_L pose for compound 2.

of 111°, and thus, displacement of the leaving group cannot readily occur. From the three initial binding complexes, R_L has the best final orientation with an A_1 value of 160°, which is the closest to 180° among the values of all the poses. In R_A and R_M, the leaving group is unproductively positioned at 111° and 74°, respectively. In addition, the distance between the bridging hydroxide and phosphorus, d_{PO}, is the shortest for A_1, with a value of 3.4 Å. Therefore, the initial binding pose of R_L is the most optimal in leading to productive hydrolysis of R_P-1.

The equilibrium orientation of the leaving group starting from S_A is not in an appropriate position for hydrolysis with an A_1 value of 68°. For either S_L or S_M, the equilibrium value for A_1 is ~140–142°, which deviates from the ideal angle of ~180°. Because the bulky phenolate group is too large to fit properly in the small binding pocket, a conformational change was observed in the MD simulations for S_M. The phenolate group rotates out of the small binding pocket and forms a complex in the active site in a binding mode that is very similar to S_L, although not identical. These results are consistent with the higher reactivity of wild-type PTE for R_P-1 relative to S_P-1. The attack angle (161° vs 140°) and shorter distance (3.4 Å) between the hydroxide and phosphorus (3.8 Å) favors R_L over S_L, and thus, the R_P enantiomer of 1 is a better substrate than the S_P enantiomer.
ΔRmax, the favored maximum possible value for GGY and YT are 1 of compound 0.1 Å shorter for the YT mutant (Table 4). However, for the GWT mutant, these two parameters favor the 2 compounds and 0.3 Å, respectively. However, for compound 2 enantiomer by 0.2 and 0.3 Å, respectively. However, for compound 2 enantiomer by a factor of 16 , indicating that the size of the cyclohexyl group might be too large to fit optimally in the active site.

Molecular Dynamics Simulations with QF. No significant stereoselectivity toward compound 1 was observed for QF. However, this mutant preferably hydrolyzes the Rp enantiomer of compound 2, relative to the Sp enantiomer by a factor of 16 . From the simulations with compound 1 bound to QF, small differences were found for both ΔA1(Rp−Sp) and ΔdPO(Rp−Sp) of 8° and −0.1 Å, respectively. However, for compound 2, a favored ΔA1(Rp−Sp) of 16° and a ΔdPO(Rp−Sp) of −0.5 Å for the Rp enantiomer were obtained (Table 4).

Correlation between ΔL and Reactivity. The analysis of the MD results has focused on the attack angle (ΔL) and the distance between the hydroxide and the phosphorus center of the substrate (dPO). The strongest correlation with the observed stereoselectivity is attack angle ΔL. Shown in Figure 8 is a plot of the relative reactivity for hydrolysis of the two enantiomers of compounds 1 and 2 with the value of ΔA1(Rp−Sp), where the maximum possible value for ΔA1(Rp−Sp) is ~110°. The largest deviations from this correlation occur for the hydrolysis of compound 2 with the wild type and the GWT mutant. For compound 2, the bulky cyclohexyl group complicates the interactions between the substrate and the active site. Therefore, the conformational degrees of freedom are likely to be more complex and may involve concerted motions of substrate and nearby residues. The overall efficiency of hydrolysis of compound 2 is significantly lower than that of compound 1 (as judged by the absolute value of kcat/Km), indicating that the size of the cyclohexyl group might be too large to fit optimally in the active site.

The values of ΔdPO(Rp−Sp) are not directly related to the chiral preferences observed experimentally but appear to be a consequence of ΔA1(Rp−Sp), resulting in an enhancement in selectivity. For compound 1, the more optimal the value of ΔL, the smaller the value of dPO. However, this relationship does not hold for compound 2.

Summary. Wild-type PTE preferentially hydrolyzes the less toxic Rp enantiomers of the nerve agents GB and GF (9) and the chromophoric analogues (compounds 1 and 2) of these nerve agents. Mutations localized to the active site of PTE in which the stereoselectivity is either enhanced or inverted have been identified (8, 9, 11). It has been assumed that the enhancement in reactivity for the hydrolysis of the initially slower Sp enantiomers is derived from the optimization of the active site for the specific compound to be hydrolyzed. For example, the methyl and isopropyl groups in the Rp enantiomer of compound 1 fit reasonably well in the small and large pockets when the phosphoryl

Table 3: Comparison of the Attack Angle, ΔL, and the Distance, dPO2, for the Productive Binding Poses of 1 with Wild-Type PTE and Five Mutants

<table>
<thead>
<tr>
<th></th>
<th>wild type</th>
<th>G60A</th>
<th>H254G/H257W/L303T</th>
<th>H257Y/L303T</th>
<th>H106G/F132G/H257Y</th>
<th>H254Q/H257F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcat/Scat ratio</td>
<td>22</td>
<td>84</td>
<td>1/33</td>
<td>1/44</td>
<td>1/5</td>
<td>1/1.5</td>
</tr>
<tr>
<td>ΔA1 (deg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rmax</td>
<td>160 ± 6</td>
<td>163 ± 7</td>
<td>148 ± 9</td>
<td>146 ± 9</td>
<td>150 ± 5</td>
<td>155 ± 7</td>
</tr>
<tr>
<td>Smax</td>
<td>140 ± 6</td>
<td>123 ± 14</td>
<td>150 ± 8</td>
<td>152 ± 6</td>
<td>150 ± 9</td>
<td>147 ± 9</td>
</tr>
<tr>
<td>ΔdPO2 (Å)</td>
<td>20 ± 6</td>
<td>40 ± 14</td>
<td>−2 ± 9</td>
<td>−6 ± 9</td>
<td>0 ± 9</td>
<td>8 ± 9</td>
</tr>
<tr>
<td>Rmax</td>
<td>3.4 ± 0.1</td>
<td>3.4 ± 0.1</td>
<td>3.8 ± 0.2</td>
<td>3.9 ± 0.2</td>
<td>3.5 ± 0.1</td>
<td>3.6 ± 0.2</td>
</tr>
<tr>
<td>Smax</td>
<td>3.8 ± 0.2</td>
<td>3.9 ± 0.1</td>
<td>3.6 ± 0.2</td>
<td>3.6 ± 0.1</td>
<td>3.6 ± 0.1</td>
<td>3.7 ± 0.2</td>
</tr>
<tr>
<td>ΔdPO2(Rp−Sp) (Å)</td>
<td>−0.4 ± 0.2</td>
<td>−0.5 ± 0.1</td>
<td>0.2 ± 0.2</td>
<td>0.3 ± 0.2</td>
<td>−0.08 ± 0.1</td>
<td>−0.12 ± 0.2</td>
</tr>
</tbody>
</table>

Table 4: Comparison of Attack Angle ΔL and Distance dPO2 for the Productive Binding Poses of 2 with Wild-Type PTE and Five Mutants.

<table>
<thead>
<tr>
<th></th>
<th>wide type</th>
<th>G60A</th>
<th>H254G/H257W/L303T</th>
<th>H257Y/L303T</th>
<th>H106G/F132G/H257Y</th>
<th>H254Q/H257F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcat/Scat ratio</td>
<td>755</td>
<td>23000</td>
<td>1/110</td>
<td>1/3</td>
<td>1/90</td>
<td>16</td>
</tr>
<tr>
<td>ΔA1 (deg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rmax</td>
<td>156 ± 6</td>
<td>162 ± 5</td>
<td>151 ± 12</td>
<td>150 ± 8</td>
<td>130 ± 9</td>
<td>166 ± 5</td>
</tr>
<tr>
<td>Smax</td>
<td>143 ± 8</td>
<td>78 ± 12</td>
<td>149 ± 8</td>
<td>152 ± 5</td>
<td>144 ± 8</td>
<td>150 ± 5</td>
</tr>
<tr>
<td>ΔdPO2 (Å)</td>
<td>13 ± 8</td>
<td>84 ± 12</td>
<td>2 ± 12</td>
<td>−2 ± 8</td>
<td>−14 ± 9</td>
<td>16 ± 5</td>
</tr>
<tr>
<td>Rmax</td>
<td>3.5 ± 0.1</td>
<td>3.4 ± 0.1</td>
<td>3.5 ± 0.2</td>
<td>3.8 ± 0.2</td>
<td>4.2 ± 0.2</td>
<td>3.3 ± 0.1</td>
</tr>
<tr>
<td>Smax</td>
<td>3.8 ± 0.2</td>
<td>3.6 ± 0.2</td>
<td>3.8 ± 0.2</td>
<td>3.7 ± 0.1</td>
<td>3.8 ± 0.2</td>
<td>3.8 ± 0.1</td>
</tr>
<tr>
<td>ΔdPO2(Rp−Sp) (Å)</td>
<td>−0.3 ± 0.2</td>
<td>−0.2 ± 0.2</td>
<td>−0.3 ± 0.2</td>
<td>0.1 ± 0.2</td>
<td>0.4 ± 0.2</td>
<td>−0.5 ± 0.1</td>
</tr>
</tbody>
</table>

FIGURE 8: Correlation between the experimental logarithm of (kcat/Km)R/(kcat/Km)S and ΔA1(Rp−Sp).
oxygen interacts with Zn$_{10}$ and the leaving group points outward toward solution. Because the S_p enantiomer of compound 1 is turned over at a rate that is $1/20$ of that of the R_p enantiomer, the orientation and/or conformational dynamics of PTE bound with S_p-1 must be inferior to that for R_p-1. The relatively straightforward strategy of resizing the large and small pockets using rational design and semirandom mutagenesis achieved the desired results in the enhancement or inversion of stereoselectivity exhibited by the wild-type enzyme (8, 10, 11, 44). The G60A mutant suppresses the rate of hydrolysis of the slow S_p enantiomers of 1 and 2 through the substitution of a methyl group into the small pocket within the active site. In the GWT mutant, the stereoselectivity is apparently reversed by reducing the size of the large pocket and expanding the size of the small pocket.

On the basis of the MD simulations, the orientation of the leaving group is the determining factor for chiral selectivity. The optimization of the substrate within the active site can be estimated by the angle of the attacking hydroxide toward the phosphorus center relative to the leaving group phenol. A direct correlation was found for the experimentally determined stereoselectivity and the calculated attack angle (Figure 8). For these compounds, the stereoselectivity varies over a range of 6 orders of magnitude. The logarithm of R/S(K_{cat}/K_m) correlates positively with the difference in the angle of attack on the phosphorus center by the bridging hydroxide, $\Delta A_1 (R_p - S_p)$. The correlation was superior for the enantiomers of 1 relative to 2, which implies that the more bulky cyclohexyl substituent in 2 may induce some more complex binding interactions. To address these issues, longer time scale simulations based on enhanced sampling techniques and additional initial binding poses can be tested.

ACKNOWLEDGMENT

We thank Jennifer Cummings for help in the preparation of the figures for this paper. All simulations were conducted with the supercomputing facilities, Brazos and Medusa (National Science Foundation Grant CHE-0541587), at Texas A&M University.

SUPPORTING INFORMATION AVAILABLE

MD simulations for the G60A, H257Y/L303T, H254G/H257W/L303T, and 110G/F132G/H257Y mutants (Tables S1–S5). This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

44. Lum, K. T. (2004) Directed evolution of phosphotriesterase: Towards the efficient detoxification of sarin and soman. Ph.D. Dissertation, Department of Toxicology, Texas A&M University, College Station, TX.
