Annotating Enzymes of Uncertain Function: The Deacylation of D-Amino Acids by Members of the Amidohydrolase Superfamily†‡

Jennifer A. Cummings,§ Alexander A. Fedorov,‖ Chengfu Xu,§ Shoshana Brown,‡ Elena Fedorov,‡ Patricia C. Babbitt,‡∥‡§ and Frank M. Raushel*§

§Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012, ‡Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, ‖Department of Biotherapeutic Sciences, School of Pharmacy, University of California, 1700 4th Street, San Francisco, California 94158-2550, and ∥Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, 1700 4th Street, San Francisco, California 94158-2330

Received April 17, 2009; Revised Manuscript Received June 9, 2009

ABSTRACT: The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as D-aminoacylases or N-acetyl-D-glutamate deacetylases. These three enzymes are 22–34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-D-Xaa, N-acetyl-D-Xaa, N-succinyl-D-Xaa, and L-Xaa-D-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acetyl-substituted derivatives of D-glutamate. The best substrates for this enzyme are N-formyl-D-glutamate (kcat/Km = 5.8 × 10^6 M^{-1} s^{-1}), N-acetyl-D-glutamate (kcat/Km = 5.2 × 10^6 M^{-1} s^{-1}), and L-methionine-D-glutamate (kcat/Km = 3.4 × 10^5 M^{-1} s^{-1}). Gox1177 and Sco4986 preferentially hydrolyze N-acetyl-substituted derivatives of hydrophobic D-amino acids. The best substrates for Gox1177 are N-acetyl-D-leucine (kcat/Km = 3.2 × 10^4 M^{-1} s^{-1}), N-acetyl-D-tryptophan (kcat/Km = 4.1 × 10^4 M^{-1} s^{-1}), and L-tyrosine-D-leucine (kcat/Km = 1.5 × 10^4 M^{-1} s^{-1}). A fourth protein, Bb2785 from B. bronchiseptica, did not have D-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-D-phenylalanine and N-acetyl-D-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the D-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the α-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional ~250 sequences identified as members of this group suggest that there are no simple motifs that allow prediction of substrate specificity for most of these unknowns, highlighting the challenges for computational annotation of some groups of homologous proteins.

The functional annotation of enzymes based solely on the amino acid sequence is a difficult endeavor. This problem has become significantly more acute since the widespread application of whole organism DNA sequencing efforts. A critical assessment of the functional annotation for the more than 4 million genes that have been sequenced thus far suggests that approximately one-third of these poorly characterized proteins are homologous to enzymes of known function with a definable catalytic activity. In the genomic era, the strategies for matching a protein/gene sequence with a definable catalytic activity must be reassessed and significantly enhanced. In many instances, the amino acid sequences of these poorly characterized proteins are homologous to enzymes of known function and a clearly defined metabolic niche. The extent of sequence identity with enzymes of known function determines, in most instances, the degree of difficulty in establishing an authentic substrate and enzymatic transformation. Our approach to this problem has been to focus on the large number of enzymes of unknown function within the amidohydrolase superfamily (2–4).

The amidohydrolase superfamily (AHS)† is a group of enzymes which has a remarkable substrate diversity embedded

†This work was supported by the National Institutes of Health (GM 71790), the Robert A. Welch Foundation (A-560), and the Hackerman Advanced Research Program (010366-0034-2007).
‡The X-ray coordinates and structure factors for Bb3285 have been deposited in the Protein Data Bank as entries 3gip and 3giq.
§To whom correspondence should be addressed. F. M. R.: telephone, (979) 845-3373; fax, (979) 845-9452; e-mail, raushel@tamu.edu. S. C. A.: telephone, (718) 430-2746; fax, (718) 430-8565; e-mail, almo@aecom.yu.edu.
∥Abbreviations: AHS, amidohydrolase superfamily; DAA, D-aminoacylase; IPTG, isopropyl thiogalactopyranoside; PDB, Protein Data Bank; PMSF, phenylmethanesulfonyl fluoride.

© 2009 American Chemical Society

Published on Web 06/11/2009 pubs.acs.org/Biochemistry
Within active sites that are forged from a (β/α)8-barrel structural fold (5). More than 6000 protein sequences have been identified as members of the AHS among the more than 7 million gene sequences determined thus far (6). Members of this superfamily have been shown to catalyze the hydrolysis of organophosphate esters, lactones, and amides, in addition to deacylations, hydrations, and isomerization reactions (5, 7, 8). However, a significant fraction of the members of this broad superfamily have an ambiguous substrate and reaction specificity that remains to be unraveled (6). A group of homologous sequences that encode enzymes of uncertain function has been provisionally annotated in public databases as N-acetyl-D-amino acid deacylases. These enzymes catalyze the general reaction illustrated in Scheme 1.

The functional role of the N-acetyl-D-amino acid deacylases is unclear. However, the addition of acylated D-amino acids in the growth medium of some microorganisms has been used to induce the production of these enzymes (9, 10). D-Amino acids are associated with neurotransmission and hormone synthesis in mammals and protection from proteinolyis in bacteria (11). Certain organisms have the means to degrade D-amino acids (e.g., D-amino acid oxidase) and to prevent their incorporation into proteins by deacylating aminoacyl-tRNAs with a misincorporated D-amino acid (11, 12). D-Amino acids are also incorporated into key sites in some antibiotics (13). Enzymes have been identified which preferentially hydrolyse N-acetylated derivatives of L-aspartate (9), D-glutamate (14, 15), D-methionine (16, 17), D-phenylalanine (18), and D-valine (19). These proteins can have a high degree of sequence identity with one another, but a structural explanation for the differences in the substrate specificity is lacking.

The only structurally characterized member of this group of enzymes is D-amino acid deacylase (DAA) from Alcaligenes faecalis DA1 (gi:28948588, PDB entry 1M7J). This enzyme can bind one or two divalent cations in the active site, but only a single metal ion bound to the β-site is required for the expression of catalytic activity. The single divalent cation at the β-site is bound to Cys-96, His-220, and His-250 (20). The nucleophilic water molecule has been proposed to be coordinated to the single divalent cation and hydrogen bonded to the side chain carboxylate of Asp-366 from β-strand 8. The proposed catalytic mechanism suggests that the carbonyl group of the amide bond is polarized via an interaction with the divalent cation bound to the β-site and that the water molecule utilized for hydrolysis is activated via metal coordination and a hydrogen bonding interaction with the carboxylate group of Asp-366. Once the tetrahedral adduct is formed, the leaving group is activated via proton transfer from Asp-366 (21). This enzyme has been reported to preferentially hydrolyze N-acetyl-D-methionine (16).

In this paper, we have determined the relative substrate specificity for three putative N-acetyl-D-amino acid deacylases from the amidohydrolase superfamily. These proteins include Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor. All of these proteins are currently annotated by NCBI as generic D-aminoacylases or more specifically as an N-acetyl-D-glutamate deacylase. Protein Bb2785 from B. bronchiseptica, also investigated here, is annotated as a hypothetical protein but is similar in amino acid sequence to other proteins provisionally identified as putative D-aminoacylases. A protein sequence alignment of Gox1177 with the structurally characterized D-aminoacylase from A. faecalis indicates that most of the residues in the active site are highly conserved, although the level of sequence identity is only 23%. In contrast, the Bb3285 enzyme is 48% identical to the D-aminoacylase from A. faecalis. A sequence alignment of Gox1177, Bb2785, Bb3285, Sco4986, and the D-aminoacylase from A. faecalis is presented in Figure 1. Substrate libraries containing nearly all combinations of L-Xaa-D-Xaa, N-acetyl-D-Xaa, N-acetyl-L-Xaa, N-succinyl-L-Xaa, and N-succinyl-D-Xaa were utilized to establish the substrate specificities for Bb3285, Gox1177, and Sco4986. It was demonstrated that Bb3285 preferentially hydrolyzes N-acetyl-D-glutamate and N-formyl-D-glutamate, whereas Gox1177 and Sco4986 hydrolyze a rather broad spectrum of N-acetyl-D-amino acids, including L-Xaa-D-Xaa dipeptides by Gox1177. The three-dimensional structure of Bb3285 was determined in the presence of the product, acetate, and also with the N-methylphosphonate derivative of D-glutamate, a potent inhibitor resembling the tetrahedral intermediate formed during substrate hydrolysis.

MATERIALS AND METHODS

Materials. The N-acetyl derivatives of D-Cys, D-Glu, D-His, D-Lys, D-Thr, D-Gln, and D-Ser were synthesized as previously described (22). The syntheses of N-succinyl-D-Glu and N-formyl-D-Glu were conducted according to the method described by Sakai et al. (23). The N-methylphosphonate derivatives of D-Leu (1), D-Phe (2), and D-Glu (3) (shown in Scheme 2) were synthesized according to the method of Xu et al. (24). The compounds N-acetyl-D/L-Asp, N-acetyl-D-Pro, and N-acetyl-D-Asn were purchased from Sigma. All other N-acetyl-D-amino acids were purchased from Novabiochem with the exception of N-acetyl-Gly (TCI America), N-acetyl-D-Arg (Avocado), and N-acetyl-D-Tyr (Bachem). Resins and protected amino acids used for solid phase peptide synthesis were purchased from Calbiochem.

Synthesis of N-Acetyl-Amino Acid Libraries. Twenty pre-loaded N-Fmoc-protected (or unprotected) L-amino acid Wang resins (0.02 mmol each of N-Fmoc-Ala, N-Fmoc-Arg(Mtr), N-Fmoc-Asn(Trt), N-Fmoc-Asp(0tBu), N-Fmoc-Cys(Trt), N-Fmoc-Glu(0tBu), N-Fmoc-Gln(Trt), N-Fmoc-Gly, N-Fmoc-His(Trt), N-Fmoc-Ile, N-Fmoc-Leu, N-Fmoc-Lys(Boc), N-Fmoc-Met, N-Fmoc-Phe, N-Fmoc-Pro, N-Fmoc-Ser(Trt), N-Fmoc-Thr(Trt), N-Fmoc-Trp(Boc), N-Fmoc-Tyr(1Bu), and N-Fmoc-Val) and DMF (5 mL) were shaken in a syringe for 30 min. The DMF was removed, and then 6.0 mL of a solution containing 20% piperidine in DMF was added and then shaken for 30 min to remove the Fmoc protecting group. This process was repeated. The beads were subsequently washed with DMF (4×5 mL) followed by the addition of acetic anhydride (82 mg, 0.8 mmol) and pyridine (63 mg, 0.8 mmol) in 6 mL of DMF and then shaken overnight. After removal of the solvent, the beads were washed with DMF (4×5 mL) and then shaken overnight with the same reagents (acetic anhydride, pyridine, and DMF). The solvent was removed, and the beads were washed with DMF (4×5 mL), dichloromethane (4×5 mL), and methanol (4×5 mL) and dried for several hours. The N-acetyl-L-amino acids were removed from the beads with 4 mL of cocktail R [TFA/thioanisole/EDT/anisole (90/5/3/2, v/v)] and shaken for 3 h.
The library of N-acetyl-\(\beta\)-amino acids was obtained after the removal of cocktail R under reduced pressure at 50°C overnight and washing with an EtOAc/Et\(_2\)O solution.

Figure 1: Amino acid sequence alignment for the \(\beta\)-aminoacylase from *A. faecalis* (PDB entry 1M7J), Gox1177 from *G. oxidans*, Bb3285 and Bb2785 from *B. bronchiseptica*, and Sco4986 from *S. coelicolor*. Conservation patterns across these sequences with respect to the metal ligands identified in Bb3285 (see Figure 8) and the \(\beta\)-aminoacylase from *A. faecalis* are highlighted with a black background. The amino acid residues proposed to play a role in the recognition of the substrate in the active site of Bb3285 are highlighted in green. The variable substrate specificity loops in Bb3285 (291–302) and the DAA from *A. faecalis* (292–302) are highlighted in red and yellow, respectively. Those residues which represent the \(\beta\)-strands of the \((\beta/\alpha)_8\)-barrel are colored light blue, and the \(\beta\)-strands in the barrel are numbered. Those residues that are conserved in DAA (PDB entry 1m7j), Gox1177, Bb3285, and Sco4986 are highlighted with a gray background.

The library of N-acetyl-\(\beta\)-amino acids was obtained after the removal of cocktail R under reduced pressure at 50°C overnight and washing with an EtOAc/Et\(_2\)O solution.

In the same fashion, a library of N-acetyl-\(\alpha\)-amino acids was prepared using N-Fmoc-protected (or unprotected) \(\alpha\)-amino acid Wang resins (\(\alpha\)-Ile, \(\alpha\)-Pro, and glycine were omitted).

Figure 1: Amino acid sequence alignment for the \(\beta\)-aminoacylase from *A. faecalis* (PDB entry 1M7J), Gox1177 from *G. oxidans*, Bb3285 and Bb2785 from *B. bronchiseptica*, and Sco4986 from *S. coelicolor*. Conservation patterns across these sequences with respect to the metal ligands identified in Bb3285 (see Figure 8) and the \(\beta\)-aminoacylase from *A. faecalis* are highlighted with a black background. The amino acid residues proposed to play a role in the recognition of the substrate in the active site of Bb3285 are highlighted in green. The variable substrate specificity loops in Bb3285 (291–302) and the DAA from *A. faecalis* (292–302) are highlighted in red and yellow, respectively. Those residues which represent the \(\beta\)-strands of the \((\beta/\alpha)_8\)-barrel are colored light blue, and the \(\beta\)-strands in the barrel are numbered. Those residues that are conserved in DAA (PDB entry 1m7j), Gox1177, Bb3285, and Sco4986 are highlighted with a gray background.
The N-succinyl-D- and N-succinyl-L-amino acid libraries were prepared using the same procedure as the N-acetyl-L-amino acid libraries except that succinic anhydride was utilized instead of acetic anhydride. Analysis by mass spectrometry (ESI, positive and negative mode) was used to verify the presence of the desired compounds in each of these four libraries.

Synthesis of t-Xaa-D-Xaa Dipptide Libraries. The dipptide libraries were constructed in a manner similar to the preparation of the N-acetyl-L-amino acid library. Eighteen pre-loaded N-Fmoc-protected (or unprotected) D-amino acid Wang resins (0.01 mmol each) were mixed, and the Fmoc protecting group was removed. However, the N-Fmoc-D-Cys(Trt)- and N-Fmoc-D-Le-loaded resins were omitted. To this mixture were added N-Fmoc-L-Ala (84 mg, 0.27 mmol), N-hydroxybenzotriazole·H2O (41 mg, 0.27 mmol), and N,N′-disopropyl carbodiimide (34 mg, 0.27 mmol), yielding the N-Fmoc-L-Ala-D-Xaa dipptide library after cleavage from the beads with cocktail R. The Fmoc protecting group was removed after the mixture had been stirred with 20% piperidine in DMF (5 mL) for 30 min. The L-Ala-D-Xaa dipptide library was obtained after removal of the solvent followed by washing with an EtOAc/ Et2O solution (1/5, v/v) and drying overnight. The remaining t-Xaa-D-Xaa dipptide libraries were constructed in a similar manner. Mass spectrometry (ESI, positive and negative mode) verified the formation of the 18 dipptides in each of the 19 dipptide libraries (the L-Cys-D-Xaa library was not synthesized).

Amino Acid Analysis of N-Acyl-Xaa and L-Xaa-D-Xaa Dipptide Libraries. The composition of the substituted amino acid libraries was determined by amino acid analysis after acid-catalyzed hydrolysis (except for cysteine and tryptophan). The individual libraries were hydrolyzed by vapor phase 6 M HCL and 2% phenol at 150 °C for 90 min. The amino acids norvaline and sarcosine were added to the samples before hydrolysis as internal standards. A sample of human serum albumin was also added. Analysis by mass spectrometry (ESI, positive and negative mode) verified the formation of the 18 dipeptides in each of the 19 dipeptide libraries (the L-Cys-D-Xaa library was not synthesized).

Cloning of Genes for Amidohydrolase Enzymes. The genes for five putative N-acyl-d-amino acid deacylasers were cloned into the Ndel/EcoRI or Ndel/HindIII restriction sites of plasmid pET-30a+ (Novagen). The gene that encodes Bb3285 (gi|33602261) was amplified from the genomic DNA of *B. bronchiseptica* (ATCC BAA-588) using the primers 5′-CAGGAGCCATATGCGCATCAAGCATACGG-3′ and 5′-CCGGCGGATCCCTATCCACCGAGCCG-3′. The gene for Bb2785 (gi|33601761) was also cloned from the *B. bronchiseptica* genomic DNA with the primers 5′-CAGGAGCCATATGCACGACGAACAGGCA-3′ and 5′-CGGGCAAGCTTGCGGTAG-3′. The gene that encodes Gox1177 (gi|5809360) was amplified from the genomic DNA of *G. oxidans* using the primers 5′-GCAGGAAGCCATATGGTTGAATGTGAAGGAGCTGGTCATCAGGGAC-3′ and 5′-CGGGCAAGCTTGCGGTAG-3′. The genomic DNA of *G. oxidans* was kindly donated by H.-M. Fischer from the Swiss Federal Institute of Technology (Zurich, Switzerland). The DNA polymerase chain reactions were performed using Platinum pfx polymerase from Invitrogen. The sequences of the cloned genes were confirmed by DNA sequencing using the facilities from the Gene Technologies Laboratory of Texas A&M University.

Expression and Purification. *Escherichia coli* BL21(DE3) cells harboring the pET-30a+ plasmids containing the gene for the expression of Bb3285 or Bb2785 and Rosetta 2 (DE3) cells containing a pET-30a+ plasmid for the expression of Gox1177 or Sco4986 were grown in Terrific Broth with 50 μg/mL kanamycin (additionally 25 μg/mL chloramphenicol for Rosetta 2 cells) at 30 °C. When the optical density of the cells reached an OD600 of ~0.6, 2.5 mM zinc acetate was added to the culture and expression of Bb3285 was induced with 100 μM isopropyl β-thiogalactoside (IPTG) or 1.0 mM IPTG for the expression of Bb2785, Gox1177, and Sco4986. Following induction, the cells were grown overnight at 16–19 °C. Cell lysis was achieved via sonication in 50 mM Tris (pH 7.5) and 100 μg/mL phenylmethylsulfonyl fluoride (PMSF) at 0 °C. The DNA present in the cell lysate was precipitated with protamine sulfate [2% (w/w) of cell mass] and removed by centrifugation. Solid ammonium sulfate was added slowly to the supernatant solution to a saturation of 60% and the protein isolated after centrifugation. The enzymes were further purified by size exclusion chromatography on a 3 L (1 L for Bb3285) column of AcA34 gel filtration medium using 50 mM Tris (Hepes for Bb3285) buffer (pH 7.5) at 4 °C. The fractions which contained the protein of the expected size were combined. The Gox1177 and Bb2785 proteins were further purified by anion exchange chromatography on a 6 mL Resource Q column from Pharmacia in
50 mM Tris (pH 7.5). The protein was eluted with a 0 to 1 M gradient of NaCl. The NaCl was removed in a final gel filtration step using a Superdex 200 size exclusion column in 50 mM Hepes (pH 7.5).

A total of 70 mg of Bb3285, 150 mg of Gox1177, and 142 mg of Bb3285 were isolated from 41, 36, and 66 g of cells, respectively. The three proteins were greater than 95% pure as assessed by sodium dodecyl sulfate—polyacrylamide gel electrophoresis (SDS—PAGE). The sequences of the first five amino acids for Gox1177 and Bb3285 were determined by the Protein Chemistry Laboratory at Texas A&M University. The two sequences matched those expected from the DNA sequence. The Bb3285, Bb2785, and Gox1177 proteins were confirmed to contain 2.1, 1.8, and 1.8 equiv of Zn, respectively, as determined by ICP-MS. The Bb3285 protein was not purified since there was no expression from either BL21 (DE3) or Rosetta 2 (DE3) cells.

The Sco4986 protein was expressed in Rosetta 2 cells, but the enzyme was found predominantly in the insoluble pellet after centrifugation. Rosetta 2 cells harboring the pET-30a (+)-plasmid alone or the pET-30a (+)-Sco4986 plasmid were cultured under identical growth conditions and subsequently lysed via sonication in the presence of 50 mM Hepes (pH 7.5) and 100 μg/mL PMSF. After centrifugation to remove insoluble proteins, the small molecules in the lysate fractions (MW < 30 kDa) were separated via ultrafiltration using a PM-30 membrane (Millipore). The lysates were frozen and stored at −80°C. The protein concentration in the crude cell lysates was determined by the Bradford assay (Bio-Rad) with 4–28 μg/mL bovine serum albumin as a protein standard.

Alternatively, Sco4986 was expressed in BL21 (DE3) cells harboring the pET-30a (+)-Sco4986 and pOFXbad-SL3 (2.5) plasmids. The cells were grown under the same conditions in the presence of 50 μg/mL kanamycin and ampicillin. The pOFXbad-SL3 plasmid was a generous gift from O. Fayet at the Laboratory for Microbiology and Molecular Genetics in Toulouse, France. The pOFXbad-SL3 plasmid contains the genes for two molecular chaperones, groES and groEL, but overexpression of these genes was not induced. The cells expressing Sco4986 (0.2 mM IPTG) in the presence of the chaperone plasmid were used in the partial purification of Sco4986. Sco4986 was partially purified, through ion exchange, in the same fashion as Gox1177, with the exception of the sonication buffer [50 mM Hepes, 10% glycerol, 100 mM NaCl, 5 mM dithiothreitol, and 100 μg/mL PMSF (pH 8.5)], the amount of protamine sulfate [0.4% (w/w) cell mass], and the saturation level of ammonium sulfate (50–70% fraction). The N-acetyl-o-phenylalanine deacetylase activity of the gel filtration fractions was used to identify the protein. The ion exchange fraction of the highest activity was submitted to the Protein Chemistry Laboratory for amino acid sequence analysis. The components of the protein sample were separated by SDS—PAGE and blotted onto a PVDF membrane. The protein band corresponding to the expected size (58 kDa) was removed and used for amino acid sequence analysis. The amino acid sequence of this band was identical to that expected for amino acids 2–5 of Sco4986.

Crystallization and Data Collection. Crystals of two different complexes (Table 1) were grown by the hanging drop method at room temperature for Bb3285 from *B. bronchiseptica*: (1) wild-type Bb3285, Zn²⁺, acetate, and formate and (2) wild-type Bb3285, Zn²⁺, and inhibitor 3. The crystallization conditions were as follows. For Bb3285, Zn²⁺, acetate, and formate, the protein solution contained Bb3285 (12.6 mg/mL) in 20 mM Hepes (pH 8.0), 30 mM NaCl, and 0.05 mM ZnCl₂; the precipitant contained 2.0 M sodium formate and 0.1 M sodium acetate (pH 4.6). For this sample, crystals appeared in 2–3 days and exhibited diffraction consistent with space group P6₁22, with two molecules of Bb3285 per asymmetric unit. For Bb3285, Zn²⁺, and inhibitor 3, the protein solution contained Bb3285 (12.6 mg/mL) in 20 mM Hepes (pH 8.0), 30 mM NaCl, 0.05 mM ZnCl₂, and 10 mM methylphosphonate inhibitor; the precipitant contained 1.0 M ammonium phosphate and 0.1 M sodium citrate (pH 5.6). For this sample, crystals appeared in 7 days and exhibited a diffraction pattern consistent with space group P6₁22, with two molecules of Bb3285 per asymmetric unit.

Prior to data collection, the crystals of two Bb3285 forms (Table 1) were transferred to cryoprotectant solutions composed of their mother liquids and 20% glycerol and flash-cooled in a nitrogen stream. All X-ray diffraction data sets were collected at the NSLS X4A beamline (Brookhaven National Laboratory, Upton, NY) on an ADSC CCD detector. Diffraction intensities were integrated and scaled with DENZO and SCALEPACK (26). The data collection statistics are given in Table 1.

Structure Determination and Model Refinement. The two Bb3285 structures (Table 1) were determined independently by molecular replacement with fully automated molecular replacement pipeline BALBES (27), using only input diffraction and sequence data. Partially refined structures of two Bb3285 complexes (Table 1) were the outputs from BALBES without any manual intervention. Subsequently, several iterative cycles of refinement were performed for each complex, including manual model rebuilding with TOM (28), refinement with CNS (29), automatic model rebuilding with ARP (30), and solvent building with the CCP4 suite (31).
Substrate Specificity of Bb3285, Gox1177, Sco4986, and Bb2785. The substrate specificities for Bb3285 and Gox1177 were determined by mixing each protein with the N-acetyl and N-succinyl amino acid libraries. The assays were conducted in 25 mM ammonium bicarbonate (pH 8.0) at 30 °C, and the concentration of each amino acid derivative in these 17-20-member libraries was ~100 μM. The N-acetyl-d-Xaa, N-acetyl-l-Xaa, N-succinyl-d-Xaa, N-succinyl-l-Xaa, Gly-d-Xaa, l-Ala-d-Xaa, and l-Asp-d-Xaa libraries were incubated for 1–24 h in the absence and presence of variable amounts of Gox1177 or Bb3285 (1–2000 nM). The reactions were quenched by removing the enzyme with a Microcon YM-10 (Millipore) membrane. A sample equivalent to ~10 μg of the initial N-acetyl-Xaa library was dried under vacuum prior to submission to the Protein Chemistry Laboratory of Texas A&M University for a determination of the liberated amino acids after the addition of each enzyme. The chromatographic peaks from the samples of unknown amino acid composition were identified by the migration time of the chromatographic peaks from the samples of unknown amino acid composition. The amino acids were quantified by integration of the chromatographic peaks. The amino acids were quantified with ninhydrin by measuring the change in absorbance at 570 nm using 1.2 units/mL formate dehydrogenase in the presence of 10 mM NADH (33).

The deacetylation of the N-acetyl amino acid derivatives by Gox1177 was monitored by coupling the formation of acetic acid to the formation of NADH with acetyl-CoA synthetase (1.1 units/mL, citrate synthase (2.3 units/mL), and malate dehydrogenase (16 units/mL) in the presence of 5.0 mM NADH, 3.8 mM l-malate, 3.1 mM ATP, 3.2 mM MgCl2, and 148 μM CoA in 130 mM triethylamine (pH 8.4). In the case of N-acetyl-d-His, N-acetyl-d-Thr, N-acetyl-d-Gln, Leu-d-Leu, Met-d-Leu, and Tyr-d-Leu, the reactions were monitored by measurement of the liberated amino acid with the ninhydrin reaction. During the course of the kinetic assays of Gox1177 with dipeptide substrates, the ninhydrin reagent was kept at 0 °C prior to heating.

The kinetic constants were determined by fitting the data to eq 2

\[\frac{v}{E_i} = \frac{k_{cat}A}{(K_a + A)} \]

where \(v \) is the velocity of the reaction, \(E_i \) is the total enzyme concentration, \(k_{cat} \) is the turnover number, \(A \) is the substrate concentration, and \(K_a \) is the Michaelis constant.

Inhibition of Gox1177 and Sco4986 by N-Methylphosphonate-Modified Amino Acids. The enzymatic activity of Gox1177 was monitored by the acetic acid coupling assay in the presence of 0–90 μM N-methylphosphonyl-d-Leu (I) at a substrate concentration of 3.0 mM N-acetyl-d-Leu. The partially purified lysate containing Sco4986 (0.1 mg of protein/mL in the final assay) was preincubated with 0–5 μM N-methylphosphonyl-d-Phe (2) for 90 min at 30 °C. The Sco4986 assays were initiated by the addition of 1.5 mM N-acetyl-d-Phe (5% of the total assay volume), and the rate of d-phenylalanine formation was measured with the ninhydrin assay. The competitive inhibition constants were obtained from a fit of the data to eq 3.

\[\frac{v}{E_i} = \frac{k_{cat}A}{(K_a(1+I/K_i) + A)} \]

Network Analysis. BLAST (34) analysis was performed, using two experimentally characterized N-acetyl-d-amino acid deacylases as seed sequences (gi|33602261 and gi|58039630) as queries against the NCBI NR database at an E value cutoff of 1 x 10^{-45}. Network analysis, coupled with literature information, was used to remove sequences with likely functions other than N-acetyl-d-amino acid deacylase. Obvious fragments (sequences with lengths of <300 amino acids) were removed, leaving approximately 250 N-acetyl-d-amino acid deacylase-like sequences. A protein similarity network (35) based on BLAST results was generated to explore the relationships among these sequences using Cytoscape (36). The nodes were arranged using the yFiles organic layout provided with Cytoscape version 2.4. Connections between nodes are shown as edges (depicted as lines) if the E value of the best BLAST hit between two sequences is at least as good as 1 x 10^{-45}. Tools used for visualization of protein networks were created by the UCSF Resource for Biocomputing, Visualization, and Informatics, supported by NIH Grant P41 RR-01081, and are available from the Resource (http://www.rvb.ucsf.edu).

Sequence Alignment. Sequences in each of the four clusters represented in the Cytoscape network provided in Figure 10 were aligned using MUSCLE (37). Alignments were edited by hand to remove unaligned regions at the N- and C-termini. The edited alignments for clusters 2, 3, and 4 in Figure 10 were combined using MUSCLE’s profile alignment mode. The alignment was
RESULTS

Substrate Specificity of Bb3285. The determination of the substrate specificity of Bb3285 was initiated with the N-acetyl-D-Xaa library. Various concentrations of enzyme (0–0.1 μM) were mixed with a fixed concentration of the substrate library and allowed to react for 1 h. The formation of free amino acids was assessed with the ninhydrin assay, and the results were plotted as shown in Figure 2A. The maximum absorbance change at 507 nm was ~0.19. If the entire substrate library had been hydrolyzed, the change in absorbance would have been ~3.5, and thus under these reaction conditions, only a small fraction of the initial substrate library is hydrolyzed. A sample of the partially hydrolyzed reaction mixture was subjected to amino acid analysis to determine the identity of the N-acyl amino acids that are functional substrates for Bb3285. The chromatogram is presented in Figure 3 as a solid red line. A control reaction that is presented in Figure 3 as a series of black dots. The substrate specificity of Bb3285 was initiated with the N-acetyl-D-Xaa library after the addition of Bb3285. Therefore, the only compound to be hydrolyzed in this substrate library is N-acetyl-D-glutamate. The other members of this N-acetyl-D-amino acid library are hydrolyzed at <1% of the rate observed for N-acetyl-D-glutamate.

Bb3285 was also utilized as a catalyst for the hydrolysis of the N-succinyl-D-Xaa library, and the results are presented in Figure 2A. Relative to the N-acetyl-D-Xaa library, the rate of hydrolysis is measurably slower. When the concentration of Bb3285 is increased 20-fold to 2.0 μM, the fraction of the N-succinyl-D-Xaa library that is hydrolyzed is approximately equal to that of the N-acetyl-D-Xaa library as illustrated in Figure 2B. Under these reaction conditions, there is no evidence of the hydrolysis of the N-acetyl-L-Xaa (Figure 2A,B) or N-succinyl-L-Xaa substrate library. Bb3285 was tested with two L-Xaa-D-Xaa dipeptide libraries, and the results are shown in panels C and D of Figure 2. With the L-Ala-D-Xaa dipeptide library, one or two dipeptides are hydrolyzed in 1 h at an enzyme concentration of 0.2 μM. The hydrolysis of the L-Asp-D-Xaa library is considerably slower. Amino acid analyses of these substrate libraries indicate that only those compounds with a D-glutamate at the carboxy terminus are substrates for Bb3285. Bb3285 was subsequently screened for dipeptidase activity toward 18 L-Xaa-D-Xaa libraries. The relative rates of hydrolysis for these libraries are summarized in Table 2.

The kinetic constants were determined for the hydrolysis of N-formyl, N-acetyl, N-succinyl, N-Met, and N-Leu derivatives of D-glutamate by Bb3285 at pH 7.5. The kinetic constants from fits of the data to eq 2 are presented in Table 3. Of the compounds tested, N-formyl-D-glutamate exhibited the highest values for kcat (2200 s⁻¹) and kcat/Km (6.8 × 10⁸ M⁻¹ s⁻¹). Somewhat lower values were obtained for N-acetyl-D-glutamate.

Substrate Specificity of Gox1177. The substrate specificity for Gox1177 was initially interrogated with the N-acetyl-D-Xaa library. The enzyme (0–2 μM) was incubated for 3 h with the N-acetyl-D-Xaa library, and then the reaction was quenched by the addition of the ninhydrin reagent to determine the concentration of the free amino acids that were released following hydrolysis of the amide bond. The plot for the change in absorbance at 507 nm as a function of enzyme concentration is presented in Figure 4A. The maximum absorbance change at the highest enzyme concentrations is ~1.1. This result indicates that approximately one-third of the N-acetyl-D-amino acids in this library were hydrolyzed under these reaction conditions. A fraction of the hydrolyzed N-acetyl-D-Xaa library was subjected to amino acid analysis to determine the specific compounds that are substrates for Gox1177. The HPLC chromatogram is presented in Figure 5 for samples that were incubated for 90 min with either 20 nM (red) or 200 nM (blue) Gox1177. This enzyme has substantially broader substrate specificity than Bb3285 does and exhibits a kinetic preference for the hydrolysis of N-acetyl derivatives of the hydrophobic amino acids leucine, methionine, phenylalanine, tryptophan, tyrosine, and valine, in addition to alanine, asparagine, glutamine, histidine, serine, and threonine. The enzyme was unable to hydrolyze compounds contained within the N-acetyl-L-Xaa or N-succinyl-D-Xaa substrate libraries (Figure 4A).

The breadth of the substrate profile for Gox1177 was further examined by utilizing the dipeptide libraries Gly-D-Xaa (Figure 4B), L-Ala-D-Xaa (Figure 4C), and L-Asp-D-Xaa (Figure 4D). A significant fraction of the compounds found in these libraries were hydrolyzed as substrates by Gox1177. To determine the relative ability of the dipeptide libraries to be hydrolyzed by Gox1177, the Gly-D-Xaa and 18 L-Xaa-D-Xaa (except L-cysteine) dipeptide libraries were mixed with 0–2 μM Gox1177, and the free amino acids produced after 3 h were determined with the ninhydrin reagent. The relative rate constants are listed in Table 2. For the dipeptide libraries, the enzyme has a preference for Tyr, Leu, Trp, Met, and Phe at the N-terminus. The kinetic parameters for the hydrolysis of L-Met-D-Leu, L-Leu-D-Leu, L-Tyr-D-Leu, and 11 N-acetyl-D-amino acid substrates by Gox1177 are provided in Table 4. At the
C-terminal end of these \(N\)-acyl-\(\alpha\)-amino acids, the preferred amino acids are leucine, tryptophan, phenylalanine, and tyrosine. The \(N\)-methylphosphonate derivative of \(D\)-leucine \((1)\) was tested as a competitive inhibitor of Gox1177. At pH 8.4, this compound was found to be a competitive inhibitor versus \(N\)-acetyl-\(D\)-leucine with a \(K_i\) value of 4.9 \(\mu\)M from a fit of the data to eq 3.

Substrate Specificity of Sco4986 and Bb2785. The Sco4986 protein was unable to be purified to homogeneity, but the substrate specificity was measured using clarified cell lysates. Control experiments were conducted using cells that contained the pET-30a(+) plasmid lacking the gene for expression of Sco4986. Incubation of the 19 \(N\)-acetyl-\(D\)-amino acids with the lysates of Rosetta 2 BL21 (DE3) cells harboring the pET-30a(+) or pET-30a(+)-Sco4986 plasmids was used to determine if any background \(\alpha\)-aminoacylase activity was present in \(E. coli\) and if the presence of the Sco4986 gene in the plasmid resulted in the lysate having \(\alpha\)-aminoacylase activity. There was a significant increase in the rate of formation of free amino acids when the substrates and the Sco4986 lysate were together in solution versus either of these components alone. It was determined that all of the \(N\)-acetyl-\(\alpha\)-amino acids were substrates for Sco4986, with the exception of the \(N\)-acetyl derivatives of \(D\)-Asp, \(D\)-Glu, \(D\)-His, \(D\)-Lys, and \(D\)-Arg. For the \(N\)-acetyl derivatives of \(\alpha\)-Ala, \(\alpha\)-Cys, \(\alpha\)-Phe, \(\alpha\)-Leu, \(\alpha\)-Met, \(\alpha\)-Gln, \(\alpha\)-Val, \(\alpha\)-Trp, and \(\alpha\)-Tyr, the rate of hydrolysis of the substrates by the pET-30a(+) control lysate ranged from 1 to 4% of that observed for the lysate containing Sco4986. The hydrolysis of the \(N\)-acetyl-Gly, \(N\)-acetyl-\(\alpha\)-Asn,
N-acetyl-\(\alpha\)-Ser, and N-acetyl-\(\alpha\)-Thr substrates by the control lysate was 11–12% of the rate observed for the lysate containing Sco4986. The relative rates of hydrolysis are summarized in Table 5. The first of these substrates is N-acetyl-\(\alpha\)-Phe \((K_m = 0.53 \pm 0.03 \text{ mM})\) followed by N-acetyl-\(\alpha\)-Trp \((K_m = 0.28 \pm 0.03 \text{ mM})\), N-acetyl-\(\alpha\)-Tyr \((K_m = 9.1 \pm 0.5 \text{ mM})\), and N-acetyl-\(\alpha\)-Met \((K_m = 6.2 \pm 1.0 \text{ mM})\). The N-methylphosphonate derivative of \(\alpha\)-Phe (2) was found to be an inhibitor of Sco4986 with a \(K_i\) of 87 ± 4 mM. The inhibition plots for Gox1177 and Sco4986 with compounds 1 and 2 are presented in Figure 6. No hydrolysis could be detected upon the incubation of Bb2785 with the 18 N-acetyl-\(\alpha\)-amino acid compounds.

Three-Dimensional Structure of Bb3285

The crystal structure of Bb3285 was determined to a resolution of 1.5 Å as a homodimer with one zinc, one acetate, and two formate molecules bound in the active site (Figure 7). N-Terminal residues 1–4 and C-terminal residues 479 and 480 are disordered in both structures and are not included in the final model. Only one residue, Met-253, lies in the disallowed region of the Ramachandran plot. This residue is located in loop L7 (after \(\beta\)-strand 7 of the barrel) and participates in hydrogen bond interactions with adjacent loop L6. In addition to the signature \((\beta/\alpha)_8\)-barrel (colored dark blue and red), two additional domains are present. The first of these domains is an insertion colored pink (residues 287–344) between \(\beta\)-strand 7 and \(\alpha\)-helix 7 of the \((\beta/\alpha)_8\)-barrel. The second domain is a nine-stranded \(\beta\)-barrel encompassing residues 5–61 (colored teal) and residues 413–478 (colored yellow) contributed from the N- and C-termini of the polypeptide. A long loop (residues 432–451) is inserted between the seventh and eighth \(\beta\)-strands of the \(\beta\)-barrel. The single zinc is bound in the \(\beta\)-metal site and is ligated by Cys-95, His-218, His-248, and the acetate product as shown in Figure 8. In this complex, one of the carboxylate oxygens from acetate is positioned 2.3 Å from the zinc and 2.6 Å from one of the oxygens of the catalytic aspartate residue from the end of \(\beta\)-strand 8 (Asp-365). The other carboxylate oxygen in the acetate is 2.6 Å from the phenolic oxygen of Tyr-190 and 2.3 Å from the zinc. The two histidines at the end of \(\beta\)-strand 1 (His-66 and His-68) do not ligate a second zinc in the \(\alpha\)-metal binding site. One of the formate molecules is interacting with Lys-250, Tyr-282, and Arg-376 at distances of 2.7, 2.5, and 2.8 Å, respectively. The other formate forms a polar interaction with the side chain of Arg-295. The second Bb3285 structure (Table 1) has well-defined density for two Zn\(^{2+}\) ions and one inhibitor molecule bound in the active site of both molecules in the asymmetric unit. The three-dimensional structure was determined to 1.8 Å resolution as a binuclear Zn enzyme with compound 3, a tight-binding inhibitor of Bb3285, bound in the active site (Figure 9). The histidine ligands, His-66 and His-68, at the end of \(\beta\)-strand 1 were coordinated at 2.1 and 2.0 Å, respectively, to the Zn in the \(\alpha\)-site. The Zn\(\beta\) metal was ligated by His-218 and His-248 as in the native structure.
The two metals were bridged by Cys-95 (2.4 and 2.3 Å) and each phosphoryl oxygen of compound 3 to either Zn_R (2.0 Å) or Zn_β (2.0 Å). The C-terminal carboxylate of 3 was within hydrogen bonding distance of Lys-250 (2.8 Å), Tyr-282 (2.7 Å), and Arg-295. Though not shown, for the sake of clarity, the 2.7 Å contact between the hydroxyl group of Y190 and the phosphoryl oxygen coordinated to Zn_β is not shown.

Network Analysis of N-Acyl-D-amino Acid Deacylases. Approximately 250 N-acyl-D-amino acid deacylase-like sequences were identified in the NCBI database. Four of these sequences are from eukaryotes, two from archaea, and the rest from bacteria. At an E value cutoff of 1 x 10^{-45}, the sequences partition into four main clusters, as shown in Figure 10. Each node in the network represents a single sequence, and each edge represents a pairwise connection between two sequences. Edges (lines) are drawn only if the BLAST score connecting two proteins is at least as good as 1 x 10^{-45}. Lengths of edges are not meaningful except that sequences in tightly clustered groups are more similar to each other than sequences with few connections.

With the exception of Gox1177, which was functionally characterized here, all of the sequences that have been shown experimentally to catalyze the deacylation of N-acyl-D-amino acids are found in cluster 3 (9, 17, 24, 39). Cluster 2 includes Bb2785, for which specificity could not be determined on the basis of library screening using the N-acytetyl-D-amino acid library. Cluster 1, which is clearly distinct from the other clusters in the network, contains no characterized enzymes.
DISCUSSION

Five genes encoding putative \(\delta \)-aminoacylases were cloned, and four of these enzymes were successfully expressed in *E. coli*: Bb3285, Bb2785, Sco4986, and Gox1177. Each of these enzymes was tested as a catalyst for the hydrolysis of \(N \)-acyl-\(\delta \)/\(\lambda \)-Xaa substrates contained within a series of well-defined libraries of \(N \)-substituted amino acid derivatives. Using ninhydrin and/or HPLC-based assays, it was possible to measure the rate of hydrolysis of each library component by quantifying the specific amino acids liberated within these libraries as a function of time or enzyme concentration. Each enzyme was screened against more than 400 compounds.

Specificity of Bb3285. Bb3285 exclusively hydrolyzes derivatives of \(\delta \)-glutamate, where this amino acid is substituted with a simple acyl group or another amino acid. This enzyme will hydrolyze \(N \)-acytelyl, \(N \)-formyl, and \(N \)-succinyl derivatives of \(\delta \)-glutamate but not the \(N \)-acyl derivatives of any other \(\delta \)- or \(\lambda \)-amino acid. Bb3285 hydrolyzes a variety of \(\lambda \)-Xaa-\(\delta \)-Glu dipeptides, but the best substrates are \(N \)-formyl- and \(N \)-acytelyl-\(\delta \)-Glu. The \(N \)-formyl-\(\delta \)-Glu substrate has the highest value of \(k_{cat} \) (2200 s\(^{-1}\)), but the values for \(k_{cat}/K_m \) with this substrate and \(N \)-acytelyl-\(\delta \)-Glu are essentially the same. The enzyme is less stringent regarding the identity of the \(\lambda \)-amino acid at the amino terminus of dipeptide substrates, but it does exhibit a preference for leucine or methionine derivatives of \(\delta \)-Glu.

Specificity of Gox1177. The second enzyme examined in this investigation, Gox1177, was found to deacetylate a broad range of \(N \)-acytelyl hydrophobic \(\delta \)-amino acids. Changing the acyl group from \(N \)-acytelyl- to \(N \)-formyl-\(\delta \)-Leu results in a decrease in \(k_{cat} \) and an increase in \(K_m \). With the \(\lambda \)-Xaa-\(\lambda \)-Xaa dipeptides, Gox1177 has a clear preference for the larger hydrophobic and aromatic residues (Tyr, Trp, Phe, Met, and Leu) at the amino terminus. The relatively high \(K_m \) values for Gox1177 with the substrates identified in this investigation call into question whether \(N \)-acytelyl-\(\delta \)-amino acids are necessarily the physiological substrates for this enzyme. Perhaps the native substrate of Gox1177 has a different functionality attached to the \(\delta \)-amino acid.

Specificity of Sco4986. The gene for Sco4986 was expressed in *E. coli* Rosetta 2, cells but the protein could not be purified to homogeneity because the protein was largely insoluble. However, the deacetylase activity of this protein could be detected in whole cell lysates. The relative rates of substrate hydrolysis clearly demonstrate that Sco4986 hydrolyzes many of the \(N \)-acytelyl-\(\delta \)-amino acid derivatives with a preference for hydrophobic and aromatic amino acids. The Michaelis constants for the best substrates found with Sco4986 are \(\sim \)5-fold lower than those of the best substrates for Gox1177.

Activity of Bb2785. We were unable to identify any catalytic activity for Bb2785. Many of the residues whose side chains are expected to bind the substrate could not be identified in sequence alignments, and thus if this protein has enzymatic activity, the substrates were not included in our screening libraries.

Structural Basis for Substrate Specificity. The three-dimensional X-ray structures of Bb3285 in the presence of potent inhibitor 3, and of the acetate-formate complex, have revealed the structural determinants for enzyme specificity of this enzyme. In the complex with acetate and two formate molecules, one of the formate molecules is ion-paired with Arg-376 and Lys-250 in addition to a hydrogen bonding interaction with the phenolic side chain of Tyr-282. The arginine and tyrosine residues are fully conserved in Bb3285, Gox1177, and Sco4986, and thus, these two residues are likely required for recognition of the \(\alpha \)-carboxylate group at the C-terminus of the substrate. The arginine residue is also fully conserved among all of the enzymes that are \(\geq 40\% \) identical in amino acid sequence to Bb3285, Gox1177, or Sco4986. The tyrosine residue is semiconserved, but the substitution is limited to a histidine in these proteins. The lysine is conserved in those enzymes that are \(> 40\% \) identical in sequence to Bb3285 but is not conserved in those sequences that are more similar to Gox1177 or Sco4986.

The second formate in the active site of Bb3285 is ion-paired with the side chain guanidino group of Arg-295, and thus, this interaction is likely required for recognition of the side chain carboxylate of the C-terminal \(\delta \)-glutamate. This assignment is confirmed by the structure of Bb3285 in the presence of compound 3, a mimic of the tetrahedral reaction intermediate (Figure 9). In Bb3285, Arg-295 is found in a loop that starts after the end of \(\beta \)-strand 7. This is the same loop that was proposed to serve as the specificity loop for the DAA from *A. faecalis* DA1, based upon a computational model of \(N \)-acytelyl-\(\delta \)-methionine bound in the active site (21). The hydrophobic side chain of \(\delta \)-methionine was postulated to interact with Leu-298 in this enzyme. However, the corresponding residue, from a sequence alignment with Bb3285, is Glu-297 (see Figure 1), and
thus, it was not so clear how the side chain carboxylate of N-glutamate substrates would be able to interact with Glu-297 in Bb3285. The answer to this dilemma is found in a structural overlay of Bb3285 with the DAA from A. faecalis as shown in Figure 11 (38). The specificity loops in these two proteins adopt distinct conformations. In the A. faecalis structure, Leu-298 is pointed toward the active site and the side chain of Arg-296 is pointed away from the active site. However, in the Bb3285 structure, Arg-295 is pointed toward the active site and the side chain of Arg-296 is pointed away from the active site. The loop colored red from Bb3285 is for residues 291–302. The phosphonamidate inhibitor is colored with pink carbons and an orange phosphorus. In this structure, Arg-295 is pointing toward the active site and ion-paired with the guanidino group of the bound inhibitor.

Figure 11: Structural overlay of Bb3285 (dark gray ribbon, green Zn) with the D-aminocylase (PDB entry 1M7J) from A. faecalis (light gray ribbon, purple Zn) showing the conformational differences between the loops in the two proteins that determine the differences in substrate specificity. The loop (colored yellow) from the D-aminocylase from A. faecalis is for residues 292–302. In this structure, Leu-298 points toward the active site and Arg-296 points away from the active site. The loop colored red from Bb3285 is for residues 291–302. The phosphonamidate inhibitor is colored with pink carbons and an orange phosphorus. In this structure, Arg-295 is pointing toward the active site and ion-paired with the guanidino group of the bound inhibitor.

residues, suggesting that only a few of these unknowns may share this preference.

All but one of the experimentally characterized deacylases represented in Figure 10 are in cluster 3; their functional specificities vary and are in most cases broad, suggesting that substrate preferences for the many uncharacterized sequences in this cluster (small circles) may be difficult to infer from multiple alignments or protein similarity networks. A network generated using a more stringent E value cutoff of 10^{-135} results in many more discrete clusters (network not shown). Clusters from this network that contain experimentally characterized proteins were examined for correlation with other properties, including organismal lineage, genome context, the identity of the bridging metal ligand, and variations in sequence length and positions of associated inserts. No correlations could be made that cleanly support an assignment of reaction specificity to any of those clusters. One explanation for this result is that excluding sequence pairs that are >90% identical, there are 45 species (76 unique strains) with multiple N-acyl-D-amino acylase-like sequences among the ~250 we identified. As is the case for the uronate isomerases, another group in the AHS for which the substrate specificities were recently reported (3), the multiple representatives of this sequence group within a single organism may have different substrate specificities, making it difficult to predict their functions without experimental and structural characterization of additional proteins in this sequence group.

For cluster 2, Bb2785, the only protein that has been experimentally screened, showed no catalytic activity with N-acyl-D-amino acid compounds. From the multiple-sequence alignment in Figure 1, this protein appears to be an outlier. Further, it is missing the last two histidine metal binding ligands (Figure 1), which could suggest that it catalyzes another, as yet unrecognized, reaction. The reaction specificity of none of the enzymes in clusters 1 and 2 has been experimentally determined, raising questions about whether Bb2785 functions as an N-acyl-D-Xaa deacylase, based on the information currently available.

With respect to the physiological functions of the cluster 3 sequence group, genome context does provide some possible clues. The gene for Sco4986 is adjacent to another open reading frame (Sco4987) that is currently annotated as a D-amino acid deaminase. The top five BLAST hits to the Sco4986 gene from different organisms show approximately 60% identity to this gene. All five are also adjacent or nearby an open reading frame annotated as a D-amino acid deaminase, amino acid racemase-like protein, or D-amino acid aldolase, and these proteins are 38–50% identical in sequence to Sco4987. The similarities in genome context for homologues of these two genes among multiple organisms could suggest that the deacylase is liberating a free D-amino acid and then a second enzyme, the gene product of Sco4987, is racemizing or deaminating the D-amino acid. Acetyltransferases for D-amino acids are known, and it is possible that this small cluster of genes is a simple two-enzyme system for metabolizing N-acyl-D-amino acids.

REFERENCES

