46.    The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry
Hyun, S.-M.; Yuan, M.; Maity, A.; Gutierrez, O.; Powers, D. C. Chem 2019, accepted.

45.    Iodosylbenzene Coordination Chemistry Relevant to MOF Catalysis
Cardenal, A. D.; Maity, A.; Gao, W.-Y.; Ashirov, R.; Hyun, S.-M. Inorg. Chem. 2019, accepted.

44.    Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts
Gao, W.-Y.; Ezazi, A. A.; Wang, C.-H.; Moon, J.; Abney, C. Wright, J. Powers, D. C. Organometallics 2019, asap. doi: 10.1021/acs.organomet.9b00162. (Special Issue on Organometallic Chemistry in MOFs). (Preprint available: ChemRxiv, 2019, doi: 10.26434/chemrxiv.7538747)

43.   High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr(IV) Siloxide Complex and Computational Studies of Related Cr(IV)L4 Systems
Bucinsky, L.; Breza, M.; Powers, D. C.; Hwang, S. J.; Kyzystek, J.; Nocera, D. G.; Telser, J. Inorg. Chem. 2019, 58, 4907-4920. doi: 10.1021/acs.inorgchem.8b03512.

42.   Templating Metastable Pd2 Carboxylate Aggregates
Wang, C.-H.; Gao, W.-Y.; Ma, Q.; Powers, D. C. Chem. Sci. 2019, 10, 1823-1830. doi: 10.1039/C8SC04940H.

41.   Hypervalent Iodine Chemistry as a Platform for Aerobic Oxidation Catalysis
Maity, A.; Powers, D. C. Synlett 2019. doi: 10.1055/s-0037-1610338. (Invited Highlight).

40.   In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts
Gao, W.-Y.; Cardenal, A. D.; Wang, C.-H.; Powers, D. C. Chem. Eur. J. 2019, 25, 3465-3476. doi: 10.1002/chem.201804490.

39.    Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C-H Amination
Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. J. Am. Chem. Soc. 2018, 140, 10412-10415. doi: 10.1021/jacs.8b05599.

38.    Oxidation Catalysis via an Aerobically Generated Dess-Martin Periodinane Analogue
Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 7205-7209. doi: 10.1002/anie.201804159. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.6149276)

37.    Probing Substrate Diffusion in Interstitial MOF CHemistry with Kinetic Isotope Effects
Wang, C.-H.; Das, A.; Gao, W.-Y.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 3676-3681. doi: 10.1002/anie.201713244. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.5883142.v1)


36.    Oxidase Catalysis via Aerobically Generated Hypervalent Iodine Intermediates
Maity, A.; Hyun, S.-M.; Powers, D. C. Nat. Chem. 2018, 10, 200-204. doi: 10.1038/nchem.2873. (Preprint available: ChemRxiv, 2017, doi: 10.26434/chemrxiv.5419270.v1)

35.    Cis-Decalin Oxidation as a Stereochemical Probe of in-MOF versus on-MOF Catalysis
Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377-7380. doi: 10.1039/C7CC02570J.

34.    Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography
Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C. J. Am. Chem. Soc. 2017, 139, 2912-2915. doi: 10.1021/jacs.6b13357.

33.    Oxidation of Metal–Carbon Bonds
Cardenal, A. D.; Powers, D. C. Chem. Molec. Sci. Chem. Eng. 2016, 55, 1–27. doi: 10.1016/B978-0-12-409547-2.13796-5.

Before A&M

32.    Halogen Photoelimination from Sb(V) Dihalide Corroles
Lemon, C. M.; Hwang, S. J.; Maher, A. G. Powers, D. C.; Nocera, D. G. Inorg. Chem. 2018, in press. doi: 10.1021/acs.inorgchem.8b00314.

31.    Gold Corroles as Near-IR Phosphors for Oxygen Sensing
Lemon, C. M.; Powers, D. C.; Brother, P. J.; Nocera, D. G. Inorg. Chem. 2017, 56, 10991–10997.

30.    The Energetics and Mechanism of Cl2 Elimination from Binuclear Pt(III) Complexes
Powers, D. C.; Hwang, S. J.; Anderson, B. L.; Yang, H.; Zheng, S.-L. Chen, Y.-S.; Cook, T. R.; Gabbai, F. P.; Nocera, D. G. Inorg. Chem. 2016, 55, 11815–11820.

29.    Electronic Structure of Copper Corroles
Lemon, C. M.; Huynh, M.; Maher, A. G.; Anderson, B. L.; Bloch, E. D.; Powers, D. C.; Nocera, D. G. Angew. Chem., Int. Ed. 2016, 55, 2176–2180.

28.    Secondary Coordination Sphere Effects in Halogen Photoelimination from Monomeric Ni(III) Complexes
Hwang, S. J.; Anderson, B. L.; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Organometallics 2015, 34, 4766–4774.

27.    Trap-Free Chlorine Photoelimination from Mononuclear Ni(III) Complexes
Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2015, 137, 6472–6475.

26.    Tandem Redox Mediator/Ni(II) Trihalide Complex Photocycle for Hydrogen Evolution from HCl
Hwang, S. J.; Powers, D. C.; Maher, A. G.; Nocera, D. G. Chem. Sci. 2015, 6, 917–922.

25.    Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes
Ullman, A. M.; Liu, Y.; Bediako, D. K.; Huynh, M.; Wang, H.; Anderson, B. L.; Powers, D. C.; Breen, J. J. Abruña, H. D.; Nocera, D. G. J. Am. Chem. Soc. 2014, 136, 17681–17688.

24.    Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations
Powers, D. C.; Anderson, B. L.; Hwang, S. J.; Powers, T. M.; Pérez, L. M.; Hall, M. B.; Zheng, S.-L.; Chen, Y.-S.; Nocera; D. G. J. Am. Chem. Soc. 2014, 136, 15346–15355. (Highlighted in: Nature Chem. 2015, 7, 12–13.)

23.   Theoretical Analysis of Cobalt Hangman Porphyrins: Ligand Dearomatization and Mechanistic Implications for Hydrogen Evolution
Solis, B. H.; Maher, A. G.; Honda, T. Powers, D. C.; Nocera, D. G.; Hammes-Schiffer, S. ACS Catal. 2014, 4, 4516–4526.

22.    Halide-Bridged Binuclear HX-Splitting Catalysts
Powers, D. C.; Hwang, S. J.; Zheng, S.-L.; Nocera, D. G. Inorg. Chem. 2014, 53, 9122–9128.

21.    Oxidation of Carbon–Metal Bonds
Powers, D. C.; Ritter, T. Comp. Org. Synth. 2014, Chapter 7.27.

20.    Metal–Metal Bond-Containing Complexes as Catalysts for C–H Functionalization
Kornecki, K.; Berry, J. F.; Powers, D. C.; Ritter, T. Prog. Inorg. Chem. 2014, 58, 223–300.

19.     Two-Electron Photoreduction of a Ni(II) Halide Enables H2 Evolution from HCl
Powers, D. C.; Anderson, B. L.; Nocera, D. G. J. Am. Chem. Soc. 2013, 135, 18876–18883.

18.    Halogen Photoelimination from Dirhodium Phosphazane Complexes via Chloride-Bridged Intermediates
Powers, D. C.; Chambers, M. B.; Teets, T. S.; Elgrishi, N.; Anderson, B. L.; Nocera, D. G. Chem. Sci. 2013, 4, 2880–2885.

17.    A Transition State Analogue for the Oxidation of Binuclear Palladium(II) to Binuclear Palladium(III) Complexes
Powers, D. C.; Ritter, T. Organometallics 2013, 32, 2042–2045.

16.    Bimetallic Catalysis with Palladium
Powers, D. C.; Ritter, T. In Science of Synthesis; Trost, B. M.; Stoltz, B. M., Eds.; Thieme: Stuttgart, 2012; Vol. 1, 1–31.

15.    Connecting Binuclear Pd(III) and Mononuclear Pd(IV) Chemistry by Pd–Pd Bond Cleavage
Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 12002–12009.

14.    Bimetallic Redox Synergy in Oxidative Palladium Catalysis
Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840–850.

13.    Synthesis and Structure of Solution-Stable One-Dimensional Palladium Wires
Campbell, M. G.; Powers, D. C.; Raynaud, J.; Graham, M. J.; Xie, P.; Lee, E.; Ritter, T. Nature Chem. 2011, 3, 949–953.

12.    A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging
Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334, 639–642.

11.    Palladium(III) in Synthesis and Catalysis
Powers, D. C.; Ritter, T. Top. Organomet. Chem. 2011, 35, 129–156.

10.    On the Mechanism of Palladium-Catalyzed Aromatic C–H Oxidation
Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14530–14536.

9.     Bimetallic Reductive Elimination from Dinuclear Pd(III) Complexes
Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14092–14103.

8.     Bimetallic Palladium Catalysis: Direct Observation of Pd(III)–Pd(III) Intermediates
Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050–17051.

7.     Bimetallic Pd(III) Complexes in Palladium-Catalysed Carbon–Heteroatom Bond Formation
Powers, D. C.; Ritter, T. Nature Chem. 2009, 1, 302–309. (Highlighted in: Nature 2009, 459, 917–918.)

6.     Thermal Isomerizations of cis,anti,cis-Tricyclo[,7]dodec-3-ene to trans- and cis-endo-Tricyclo[,7]dodec-9-ene: Diradical Conformations and Stereochemical Outcomes in [1,3] Carbon Shifts
Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Tetrahedron 2007, 63, 6331–6338.

5.     Thermal Chemistry of Bicyclo[4.2.0]oct-2-enes
Powers, D. C.; Leber, P. A.; Gallagher, S. S.; Higgs, A. T.; McCullough, L. A.; Baldwin, J. E. J. Org. Chem. 2007, 72, 187–194.

4.     Thermal Reactions of 7-d- and 8-d-Bicyclo[4.2.0]oct-2-enes
Baldwin, J. E.; Leber, P. A.; Powers, D. C. J. Am. Chem. Soc. 2006, 128, 10020–10021.

3.     Thermal Reactions of 8-Methylbicyclo[4.2.0]oct-2-enes: Competitive Diradical-Mediated [1,3] Sigmatropic, Stereomutation, and Fragmentation Processes
Bogle, X. S.; Leber, P. A.; McCullough, L. A.; Powers, D. C. J. Org. Chem. 2005, 70, 8913–8918.

2.     Thermal Isomerization of cis,anti,cis-Tricyclo[,7]undec-3-ene to endo-Tricyclo[,6]undec-8-ene
Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Org. Lett. 2005, 7, 5195–5197.

1.     Analysis of Natural Buffer Systems and the Impact of Acid Rain. An Environmental Project for First-Year Chemistry Students
Powers, D. C.; Higgs, A. T.; Obley, M. L.; Leber, P. A.; Hess, K. R.; Yoder, C. H. J. Chem. Educ. 2005, 82, 274–277.