Oxygen Management, I. Storage and Transport Hemoglobin (Hb)/Hemerythrin/Hemocyanin

Readings:

Lippard + Berg: Chapter 11.1

Fenton Ch. 3 Dioxygen management—storage

and transport

Kaim + Schwederski: Chapter 5.1-5.2

Life Chemistry: Oxygen Chemistry

Fe²⁺
$$\rightarrow$$
 Fe³⁺
Cu⁺ \rightarrow Cu²⁺
S²⁻ \rightarrow SO₄²⁻
H₂ \rightarrow H₂O
NH₃ \rightarrow NO₃-, NO₂-, etc.

 $6 H_2O + 6 CO_2$ ----> $C_6H_{12}O_6 + 6 O_2$

General Properties of O2

PLUS: Highly Reactive

Bond Order = $\frac{\text{\# bonding e-s} - \text{\# anti-bonding e-s}}{2}$

 σ_{2s}

Table 11.2 Vibrational and geometrical properties of dioxygen species

Species	ν _{O-O} (cm ⁻¹)	d _{O-O} (Å)
O_2^+	1,905	1.12
O_2	1,580	1.21
O_2^-	1,097	1.33
O_2^{2-}	802	1.49

Dioxygen Reactions

1. Importance of O₂ reaction

Energy (respiration)
Activation of C-H bond (functional group)

2. O₂ redox chemistry: O₂ is a powerful oxidant!

Reaction	E°, V vs. NHE, pH 7, 25°C
$O_2 + e^- \rightarrow O_2^-$	-0.33
$O_2^- + e^- + 2H^+ \rightarrow H_2O_2$	+0.89
$H_2O_2 + e^- + H^+ \rightarrow H_2O + OH$	+0.38
$OH + e^- + H^+ \rightarrow H_2O$	+2.31
$O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$	+0.281
$H_2O_2 + 2e^- + 2H^+ \rightarrow 2H_2O$	+1.349
$O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$	+0.815

So why does O_2 not react with everything?

Kinetics of Dioxygen Reactions

E

1. Small theromodynamic barrier

$$O_2 + e^- \rightarrow O_2^ E^{\circ} = -0.33 \text{ V}$$

2. Large kinetic barrier:

$$^{1/2}{^{3}O_{2}} + ^{1}X \xrightarrow{\text{slow}} ^{1}XO$$

Triplet Singlet Singlet dioxygen substrate product

1. through excited triplet state

1)
$$\sqrt[1]{2} {}^{3}O_{2} + {}^{1}X \rightarrow {}^{3}XO$$

$$\begin{array}{ccc}
& & & 3XO \xrightarrow{\text{slow}} & 1XO \\
& & \uparrow \uparrow & & \uparrow \downarrow
\end{array}$$

 $E_{activation} > 40-70 \text{ kcal/mol}$

2. Through excited singlet O_2

2)
$${}^{1}/_{2} {}^{1}O_{2} + {}^{1}X \rightarrow {}^{1}XO$$

$$\uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \downarrow$$

 $E_{activation} > 22.5 \text{ kcal/mol}$

3. Through electron transfer (reduction)

Need an unusually strong reductant

4. Organic radical reactions

Initiation:
$$X_2 \rightarrow 2X$$

$$X \cdot + RH \rightarrow XH + R \cdot$$

Propagation:
$$R \cdot + O_2 \rightarrow ROO \cdot$$

$$ROO \cdot + RH \rightarrow ROOH + R \cdot$$

Termination:
$$R \cdot + ROO \cdot \rightarrow ROOR$$

$$2ROO \rightarrow ROOOOR \rightarrow O_2 + ROOR$$

Needs initiators
Difficult to control selectivitiy
Can damage biomolecules

5. Through metal centers

Mode of attachment to Metal ions

Mode of attachment to Metal ions				
Structure	mode of coor	biological example		
O M	η^1	end-on	myoglobin	
M O	η^2	side-on		
M-O $O-M$	μ– $η$ ¹ : $η$ ¹	end-on bridging		
$M \subset \bigcup_{O} M$	μ – η^2 : η^2	side-on bridging	hemocyanin	
M < 0 $O - M$	μ – η^1 : η^2	end-on/side-on bridging		
M M	μ_4 – $(\eta^1)_4$	end-on fourfold bridging		

Table 11.1 Some properties of protein oxygen carriers

Property	Hemoglobin	Hemerythrin	Hemocyanin
Metal	Fe	Fe	Cu
Oxidation state of metal in deoxy protein	(11)	(II)	(1)
Metal: O ₂	Fe ^{III} : O ₂ -	2Fe ^{III} : O ₂ -	2Cu ^{II} : O ₂
Color, oxygenated	Red	Violet-pink	Blue
Color, deoxygenated	Red-purple	Colorless	Colorless
Coordination of Fe	Porphyrin ring	Protein side chains	Protein side chains
Molecular weight	65,000	108,000	400,000 to 20,000,000
Number of subunits	4 ^a	8	Many

^aIn some species (for example, *Glycera*), hemoglobins are monomeric; in others (for example, *Arenicola*), they are multisubunit oligomers with molecular weights in the millions.

Fe, Zn, Cu: the most common transition metal ions in biology

Element	Sea Water (M) x 10 ⁻⁸	Human Plasma (M) x 10 ⁻⁸	
Fe	Fe 0.005-2 2		
Zn	8.0	1720	
Cu	1.0	1650	
Mo	10	1000	
V	4.0	17.7	
Mn	0.7	10.9	
Cr	0.4	5.5	
Ni	0.5	4.4	
Co	0.7	0.0025	

Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S. Bioinorganic Chemistry; University Science Books: Sausalito, CA, 1994.

Figure 2.2 Logarithmic diagrams of relative molar concentrations of the elements in different environments (arbitrary units) (data from [1] and [4])

1. Abundance

Fe: the most common transition metal ion in biology and used for O_2 management, chemistry, and e^- -transfer

Table 5.1 Distribution of the major iron-containing proteins in an adult human (modified from [10])

protein	molecular mass of the protein (kDa)	amount of iron (g)	% of total body iron	type of iron: heme (h) or non-heme (nh)	number of iron atoms per molecule	function
hemoglobin	64.5	2.60	65	h	4	O, transport in blood
myoglobin	17.8	0.13	6	h	1	O, storage in muscle
transferrin	76	0.007	0.2	nh	2	iron transport
ferritin	444	0.52	13	nh	up to 4500	iron storage in cells
hemosiderin		0.48	12	nh		iron storage
catalase	260	0.004	0.1	h	4	metabolism of H ₂ O ₂
peroxidases	variable	small	small	h	1	metabolism of H ₂ O ₂
cytochrome c	12.5	0.004	0.1	h	1	electron transfer
cytochrome c oxidase	>100	< 0.02	< 0.5	h	2	terminal oxidation
flavoprotein oxygenases	about 50	small	small	h	1	$(O_2 \rightarrow H_2O)$ incorporation of
(e.g. P-450 system)						molecular oxygen
iron-sulfur proteins	variable	about 0.04	about 1	nh	2-8	electron transfer
ribonucleotide reductase	260 (E. coli)	small	small	nh	4	transformation of ribonucleic acids to deoxyribonucleic acids

Fe: the most common transition metal ions in biology

Table 1.4 Fe redox potentials.

Coord. no., type	$Fe^{3+}/Fe^{2+} E^{\circ} (mV)$		
6, aquo complex	770		
6, heme	390		
4, $Fe_4S_4(SR)_4^-$	350		
6, heme	250		
4, Fe(SR) ₄	-60		
Ferredoxins 4, $Fe_4S_4(SR)_4^{2-}$			
	6, aquo complex 6, heme 4, Fe ₄ S ₄ (SR) ₄ ⁻ 6, heme 4, Fe(SR) ₄		

3. Thermodynamics: extensive range of redox potentials

Fe: the most common transition metal ions in biology

Figure 1.3 Versatility of Fe coordination complexes.

4. Kinetics: facile redox reactions (because of electronic structure)

Fe/O₂ Chemistry as carrier/storage

Ideally*: Fe(II) +
$$O_2$$
 = Fe(III)- O_2 = Fe(II) + O_2

Problems:

1. Dimerization => μ -oxo species

Fe(III) +
$$O_2$$
 Fe(III) - O_2 -
Fe(IIII) - O_2 -

$$Fe(IV)=O+Fe(II)$$
 Fe(III)-O-Fe(III)

Fe/O₂ Chemistry

2. Auto-oxidation

$$Fe^{II} + O_2$$
 \Longrightarrow $Fe^{III} - O_2^-$

$$Fe^{III} - O_2^- \Longrightarrow$$
 $Fe^{III} + O_2^-$

$$Fe^{III} + Cl^- \Longrightarrow$$
 $Fe^{III} - Cl$

-- favorable in the presence of a nucleophile such as Cl-

Role of protein scaffold

- Prevent dimerization
 - Through isolation of heme
- Prevent autooxidation
 - Prevent side reactions
 - Prevent binding of distal ligands
- Provide ligands for modulation of O₂ binding affinity
 - H-bond from distal His
 - H-bond to proximal His
 - Porphyrin doming
 - o In deoxy-form, compression of the Fe-Im bond and decrease in the out-of-plane displacement
 - o In the oxy form, unrestricted motion of the Fe-His to the porphyrin plane

Myoglobin- Key Properties

- An O₂ transport protein in muscle
- A globular soluble protein, 151 residues (16 kDa)
- 8 α-helices (A,B,C,.....H)- first protein crystal structure!
- Contains a heme prosthetic group

First Protein Structure

- Myoglobin.
- Protein purified from whale blood.
- Max Perutz 1958.
- Showed a 75% α -helical fold.
- 155 amino acids, ~ 17 kDa.

X-ray Structure of Sperm Whale Myoglobin

The Heme Prosthetic Group The O₂ carrier in Myoglobin and Hemoglobin

- Protoporphyrin with Fe^{II}
- Covalent attachment of Fe via His F8 side chain
- Additional stabilization via hydrophobic interaction
- Fe^{II} state is active, Fe^{III} [oxidized]
- Fe^{II} atom in heme binds O₂

Different types of hemes

heme a heme b heme c

Soluble in different oxidation states

Binding of O₂ to Heme

- Binding of O₂ to a free heme group is irreversible
- Enclosure in a protein allows reversible binding
 - > O₂ has only limited solubility (1 X 10⁻⁴ M) in water
 - > Solubility problem overcome by binding to proteins
 - > Also increases diffusion
- Binding of O₂ alters heme electronic structure
 - Causes changes in heme electronic spectrum (Vis)

UV-vis Spectral Characteristics of Heme Proteins

Carbon Monoxide Poisoning

- Heme Fe(II) binds many other small molecules with structures similar to O₂ including: CO, NO, H₂S
- O₂ is actually a fairly weak binder relative to these other molecules, particularly CO. [Essential for Biology]
- When exposed to CO, even at low concentrations, O_2 transport proteins will be filled with $CO \rightarrow$ limiting their vital O_2 capacity.

O₂ Compared to CO Adduct

Fe/O₂ Chemistry

3. Binding affinity CO $>> O_2$

Table 4.6 Relative affinities (M) of iron-porphyrinato systems for O_2 and CO, and relative affinities (N) for O_2 of iron and cobalt-porphyrinato systems.

Compound	P _{1/2} (Fe—CO) Torr	P _{1/2} (Fe—O ₂) Torr	$P_{1/2}(\text{Fe}-\text{CO}_2)/P_{1/2}(\text{Fe}-\text{CO})$	P _{1/2} (Co—O ₂) Torr	$P_{1/2}(\text{CoO}_2)/P_{1/2}(\text{FeO}_2)$
H ₂ O, pH 7			,		
Whale Mb	0.018	0.51	28	57	110
Whale Mb	0.0049	6.2	1,300		_
(E7His→Gly)					
Aplysia Mb	0.013	2.7	200	$50 \times \text{CoMb}$	>1,000
Glycera Mb	0.00089	5.2	5,800	$50 \times CoMb$	>1,000
Fe(PPIX-Im)	0.002	1.0	500	_	_
Toluene/Benzene					
Fe(PF-Im)/					
Co(PF) (1-MeIm)	0.000022	0.58	27,000	140	240
$M(PF)(1, 2-Me_2Im)$	0.0089	38	4,300	900	24
M(Bis-Poc)-					
$(1, 2-Me_2Im)$	0.0091	508	55,800	_	_
Fe(PPIX-Im)/					
Co(PPIX) (1-MeIm)	0.00025	5.6	22,000	18,000	3,200
M(C ₂ -Cap)(1-MeIm)	0.0054	23	4,200	140,000	6,100

Deoxy- and oxyMb

Figure 11.2

Diagram illustrating the structural and spin state changes that occur upon binding of dioxygen to an iron porphyrin. Shown are (a) the high-spin ferrous deoxy form and (b) the low-spin ferric oxy form.

Mode of O₂ Binding

 $Fe^{(II)}(HS)$ ionic radius = 78 pm

 $Fe^{III}(LS)$ ionic radius = 61 pm

Modulation of Heme Activity

Distal Side

- substrate-binding
- metal-binding
- axial ligand
- H-bonding interactions
- local charge distribution

Proximal Side

- type of proximal ligand
- H-bonding to proximal ligand
- local charge distribution

Synthetic analogs of Hb and Mb

Collman, J.P. Acc. Chem. Res. 1977, 10, 265-272.