Chem489-503 Metals in Biology and Medicine

Iron-sulfur clusters March 23, 2010 Dr. David Barondeau

What are iron-sulfur clusters?

- Cofactors found in all life forms
- Contain iron (Fe³⁺ and Fe²⁺) and sulfide (S²⁻)
- Iron typically exhibits tetrahedral geometry
- Early investigators:
 - Helmet Beinert (Wisconsin-Madison)
 - Richard Holm (Harvard)
 - Eckard Münck (Carnegie Mellon)

Properties of Fe-S clusters

- Can delocalize electron density over both iron and sulfur
- Makes Fe-S clusters ideal for primary role in biology: mediating electron transfer
- Conserved set of proteins that synthesize Fe-S clusters and insert the intact clusters into Fe-S proteins
- Fe-S protein ligands are typically cysteine thiolates
- Other ligands include Asp, His, Ser, backbone amide, Arg, ...
- Clusters are typically stable in two oxidation states
- Brown color
 - S → Fe charge transfer bands (LMCT)
 - More intense for Fe³⁺ oxidation state

Function	Examples	Cluster type
Electron transfer	Ferredoxins; redox enzymes	[2Fe-2S]; [3Fe-4S]; [4Fe-4S]
Coupled electron/proton transfer	Rieske protein Nitrogenase	[2Fe-2S] [8Fe-7S]
Substrate binding and activation	(de)Hydratases Radical SAM enzymes Acetyl-CoA synthase	[4Fe-4S] [4Fe-4S] Ni-Ni-[4Fe-4S], [Ni-4Fe-5S]
	Sulfite reductase	[4Fe-4S]-siroheme
Fe or cluster storage	Ferredoxins Polyferredoxins	[4Fe-4S] [4Fe-4S]
Structural	Endonuclease III MutY	[4Fe-4S] [4Fe-4S]
Regulation of gene expression	SoxR FNR IRP IscR	[2Fe-2S] [4Fe-4S]/[2Fe-2S] [4Fe-4S] [2Fe-2S]
Regulation of enzyme activity	Glutamine PRPP amidotransferase Ferrochelatase	[4Fe-4S] [2Fe-2S]
Disulfide reduction	Ferredoxin:thioredoxin reductase Heterodisulfide reductase	[4Fe-4S] [4Fe-4S]
Sulfur donor	Biotin synthase	[2Fe-2S]

TABLE 1Functions of some biological [Fe-S] clusters^a

D. Barondeau - Chem 489 - Spring 2010 Ann Rev Biochem 2005 74:247-281

Formation of Fe-S clusters

- Synthetic Fe-S clusters selfassemble
- Fe-S clusters control protein structure in vicinity of cluster
 - Documented examples of cluster driven protein reorganization
- Unstructured synthetic peptides will correctly assembly clusters
- Apo forms of the [Fe₂S₂] and [Fe₄S₄] proteins can be activated by simple addition of S²⁻ and Fe^{2+/3+}
- Why do we need metallochaperone systems for Fe-S cluster assembly?

SCIENCE • VOL. 277 • 1 AUGUST 1997 • www.sciencemag.org

Fe-S cluster biosynthesis

- Free iron and sulfide are toxic to cells
 - Fe²⁺ is prone to Fenton chemistry
 - H₂S is an inhibitor of cytochrome oxidase (similar to CN toxicity)
- Conserved set of Fe-S cluster assembly proteins
 - Build clusters from iron, cysteine, and electrons
 - Recognize, through an unknown mechanism, and insert Fe-S clusters into apo metalloproteins
- Defects in the biogenesis of iron-sulfur clusters
 - Directly associated with mitochondrial dysfunction, cardiovascular and neurodegenerative disease
 - Contribute to genomic instability, the development of cancer, and aging

Challenges for assembly system

- Must be able to control the reactivity of iron and sulfide to minimize toxicity
- Must be able to recognize different protein scaffolds and environments for cluster insertion
 - Cluster may be on surface or completely buried in protein
- Must be able to insert correct nuclearity cluster into Fe-S protein
 - [Fe₂S₂] and [Fe₄S₄] can both contain 4 cysteine ligands
- Must be able to insert cluster with non-cysteine ligands
 - Rieske centers have 2 His ligands
- Must favor functional state of protein and not undergo local rearrangement
 - Cluster often has incomplete protein ligation to open up coordination site(s) for chemistry
 - Large driving force for cluster assembly
- Must avoid placing cluster in sites designed for other metal cofactors
 - In Intersection 2 Cys 2 His motifs

Components of Fe-S assembly pathways

Diseases resulting from deficient Fe/S proteins

- One-electron carrier proteins
- Involved in electron transport chain and oxidoreduction reactions
- First discovered in spinach chloroplast in 1962
- Typically ~12 kDa monomeric protein with 2 Fe and 2 sulfide ions
- Note that there are also proteins with [Fe₄S₄] clusters that are also called ferredoxin

- Two sulfide ions bridge the two lron atoms
- Form a Fe₂(µ₂-S)₂ core
- Each Fe also has 2 cysteine ligands that connects the cluster to the protein
- Overall geometry about each Fe is tetrahedral
- Fe-S distance is 2.3 Å; Fe-Fe distance is 2.7 Å
- Proteins are brown with S → Fe charge transfer band near 400 nm
 - Broad band in which the intensity of the absorbance band for the oxidized form is 2X that of the reduced form

- For Fe-S clusters, the redox states of the clusters are indicated by "core" oxidation states
- In the oxidized state
 - Both iron atoms of the cluster are formally Fe³⁺
 - Both sulfur atoms are formally sulfide (-2 charge)
 - Core oxidation state +2 [Fe₂S₂]²⁺
- The the reduced state
 - One iron atom is Fe³⁺ and the other is Fe²⁺
 - Both sulfur atoms are formally sulfide (-2 charge)
 - Core oxidation state +1 [Fe₂S₂]¹⁺
- The redox potential of the [Fe₂S₂]^{2+/1+} range from -400 to -50 mV

- Fe atoms are antiferromagnetically coupled
- Ferromagnetic and antiferromagnetic coupling
 - The magnetic moments (usually related to the spins of electrons) align with neighboring spins
 - In ferromagnetism the spins are in the same direction
 - In antiferromagnetism the spins are pointing in opposite directions
- [Fe₂S₂]²⁺ state
 - Each Fe³⁺ ions with tetrahedral geometry would be expected to have 5 unpaired electrons and s = 5/2 spin state
 - These irons are antiferromagnetically coupled to give a core spin state S = 0
- [Fe₂S₂]¹⁺ state
 - The Fe³⁺ would be s = 5/2 and the Fe²⁺ would be s = 2
 - Antiferromagnetically couple to core S = 1/2 spin state

Crystal structure of [Fe₂S₂] ferredoxin

Rieske [Fe₂S₂] center

- Same core structure and oxidation states as [Fe₂S₂] ferredoxin
- Ligated to two cysteines and two histidines
- Redox potential is more positive (+265 to +310 mV) than ferredoxin (-400 to -50 mV)
 - Indicates that the reduces 1+ core oxidation state is more stabilized
 - Can be rationalized as you have replaced two anionic ligands with two neutral ligands
 - A more negatively charge ligand typically stabilizes the higher oxidation state
- Redox potential is pH dependent
 - Data indicates that there are two redox-dependent protonation events
 - Likely that the His ligands undergo protonation upon reduction
- The protein is pink

Rieske [Fe₂S₂] center

- Found in electron transport chain in mitochondria (complex III)
- Accepts electrons from quinone
- Resulting semiquinone serves as a reductant for cytochrome b

QuickTime™ and a decompressor are needed to see this picture.

QuickTime ^{va}ard a decompressor are recated in see it's picture.

Structure of Rieske domain

[Fe₄S₄] Ferredoxin

- [Fe₄S₄] cluster has cubane structure
 - 4 iron atoms and 4 inorganic sulfides
 - Each iron is tetrahedrally coordinated
 - Typically coordinated by 4 cysteines
 - Other ligands: His, H₂O, substrate, SAM
- Involved in electron transfer
- There are ferredoxin proteins that contain
 - One [Fe₄S₄] cluster
 - Bacillus thermoproteolyticus
 - Two [Fe₄S₄] clusters
 - Clostridium pasteurianum
 - Many [Fe₄S₄] clusters
 - Methanobacterium thermoautotrophicum
 - May be involved in Fe-S cluster storage
- Broad absorbance band near 400 nm
 - Due to S → Fe charge transfer bands

[Fe₄S₄] clusters

- Redox properties: almost always a one electron process
- Can be stabilized in 4 core oxidation states
 - [Fe₄S₄]³⁺ contains 3 Fe³⁺ and 1 Fe²⁺
 - Is susceptible to cluster degradation to [Fe₃S₄] cluster
 - [Fe₄S₄]²⁺ contains 2 Fe³⁺ and 2 Fe²⁺
 - Extremely stable (in absence of oxygen)
 - [Fe₄S₄]¹⁺ contains 1 Fe³⁺ and 3 Fe²⁺
 - [Fe₄S₄]⁰ contains 0 Fe³⁺ and 4 Fe²⁺
- Typically for a given cluster only two adjacent states are stable
- The [Fe₄S₄]²⁺ and [Fe₄S₄]¹⁺ states are the most common
- Proteins that contain [Fe₄S₄]^{2+/1+} clusters (E₀ -270 to -750 mV) have traditionally been called ferredoxin
- Proteins that contain [Fe₄S₄]^{3+/2+} clusters (E₀ +50 to +350 mV) known as high potential iron proteins (HIPIP)

Spin coupling properties

- Ridiculously complicated
- For [Fe₄S₄]¹⁺ state (1 Fe³⁺, 3 Fe²⁺)
 - Pairs of Valence-delocalized [Fe₂S₂] fragments
 - "ferrous pair": two Fe²⁺ ions ferromagnetically couple to generate S = 4 intermediate spin
 - "mixed valence pair": Fe³⁺ and Fe²⁺ ferromagnetically couple to form S = 9/2 intermediate spin
 - The ferrous pair and mixed valence pair then antiferromagnetically couple to generate S = 1/2 system spin state
 - There are also S= 3/2, 5/2, up to 17/2 excited states that are typically not populated at cryogenic temperatures
 - There are examples where the [Fe₄S₄]¹⁺ state has a S = 3/2 system spin as the ground state (different EPR properties)

Spin coupling properties

- For [Fe₄S₄]²⁺ state (2 Fe³⁺, 2 Fe²⁺)
 - Have two "mixed valence pair"
 - Fe^{3+} and Fe^{2+} ferromagnetically couple to form S = 9/2 intermediate spin
 - The mixed valence pairs then antiferromagnetically couple to generate S = 0 system spin state
- For [Fe₄S₄]³⁺ state (3 Fe³⁺, 1 Fe²⁺) have a core system spin of 1/2
- [Fe₄S₄]⁰ state (0 Fe³⁺, 4 Fe²⁺)
 - Found in nitrogenase
 - Appears to have S = 4 system spin as ground state
- Pairs are ferromagnetically coupled and delocalized
- Antiferromagnetically coupling between the pairs is localized
- Most of this is figured out with Mössbauer spectroscopy (Eckerd Munck at Carneige Mellon)

Structure of 8Fe Ferredoxin

Fe₃S₄ Clusters

- Found in bacteria and eukaryotes
- Involved in electron transfer
- Degradation products of [Fe₄S₄] clusters
- 3 Fe ions and 4 inorganic sulfides
 - 1 sulfide bridges all 3 iron atoms
 - 3 sulfides bridge 2 iron atoms
- Iron atoms are typically bound to cysteine ligands
- Easiest to think about a [Fe₄S₄] cluster and remove an iron and cysteine ligand

Fe₃S₄ Clusters

- Redox and electronic properties
- Stable in 2 core oxidation states
- [Fe₃S₄]¹⁺
 - Formally 3 Fe³⁺ and 0 Fe²⁺ ions
 - All three irons are antiferromagnetically coupled to yield a S = 1/2 ground state system
- [Fe₃S₄]⁰
 - Formally 2 Fe³⁺ and 1 Fe²⁺ ions
 - Electron delocalizes on two of the irons which ferromagnetically couple to yield a S=9/2 intermediate spin
 - Can think of as $[Fe^{3+} Fe^{3+} Fe^{3+}]^{1+} + e^{-} \rightarrow [Fe^{3+} \{Fe^{2.5+} Fe^{2.5+}\}]^0$
 - The S = 9/2 intermediate spin for the two irons antiferromagnetically couples with the S = 5/2 spin of the other Fe³⁺ to generate a S = 2 ground state system

Fe-S clusters

- Function in electron transport
 - Ferredoxin, Rubredoxin, Rieske
- Function in substrate activation
 - Aconitase
- Function in initiating radical chemistry
 - Radical SAM enzymes such as lysine aminomutase
- Function as substrates
 - Sulfur donor function in Biotin synthase
- Additional functions
 - Gene regulation
 - Part of more complex cofactors such as the catalysts in nitrogenase, [FeFe]-hydrogenase, sulfite reductase, and acetyl-CoA synthase

- Catalyzes the reversible isomerization of citrate and isocitrate
- Cis-aconitate as intermediate

QuickTime™ and a decompressor are needed to see this picture.

 Citrate is a tertiary alcohol

 It is difficult to oxidize tertiary alcohols because forming the ketone would involve breaking a carbon-carbon bond

 To get around this problem, citrate is isomerized into isocitrate

 Isocitrate is a secondary alcohol which can be easily oxidized to the ketone by NAD⁺

 Aconitase catalyzes the dehydration of citrate of form cis-aconitate and then rehydrating the double bond to form isocitrate

- Proton abstracted in dehydration reaction does not readily exchange with solvent
- Stereochemical, radiolabeling, and kinetic experiments suggest that the intermediate "flips" in active site

- Enzyme was apparently unstable
- Found in 1951 that most of the lost activity could be readily recovered by addition of ferrous iron and a reducing agent
- Found in 1972 that the protein contained labile sulfide
- EPR of oxidized form of aconitase (g = 2.018)
- Now known to be of an inactive [Fe₃S₄]¹⁺ cluster

Figure 1. EPR spectra of c-aconitase (32 μ M; spectrum A) and m-aconitase (25 μ M; spectrum B) in 0.1 M Hepes buffer (pH 7.5). Conditions of spectroscopy: microwave power and frequency, 0.1 mW and 9.177 GHz; modulation amplitude and frequency, 0.5 mT and 100 kHz; time constant, 0.128 s; scanning time, 5 mT/min; temperature, 12 K. The marker is at g = 2.018. (Reprinted with permission from ref 25. Copyright 1992 National Academy of Sciences.)

D. Barondeau - Chem 489 - Spring 2010

Substrate binds the Fe-S cluster

Figure 9. EPR spectra of the [4Fe-4S]⁺ cluster of aconitase in the absence (top) and the presence (bottom) of substrate. Prominent features of the spectra are marked on a *g* value scale. Prior to freezing, the samples were photoreduced anaerobically in the presence of deazaflavin and oxalate. The spectra were recorded at a frequency of 9.24 GHz, 1 mW power, and 13 K. (Reprinted with permission from ref 5. Copyright 1989 Fed. Eur. Biochem. Soc.)

Mechanism

D. Barondeau - Chem 489 - Spring 2010

Aconitase (1B0J)

Radical SAM enzymes

- Discovered during early research on lysine metabolism
- Lysine 2,3-aminomutase (LAM)
 - Air sensitive
 - Purified and assayed under blanket of argon at laboratory bench
 - Activity depends on addition of dithionite (S₂O₄²⁻) and s-adenosylmethionine (SAM)

 0_{\geq}

NH2

HO

он

- SAM functioned as coenzyme and not a substrate (like in methyltransferases)
- Reaction was typical of B₁₂-dependent rearrangements
- Functional group undergoes a 1,2 migration concomitant with 1, 2 migration of a hydrogen atom
- Enzyme did not require coenzyme B₁₂

D. Barondeau - Chem 489 - Spring 2010

NH₂

Radical SAM

- Activity enhanced by iron
- Enzyme prepared in anaerobic chamber was 10X more active and contained a visible absorbance band typical of Fe-S clusters
- Addition of acid released hydrogen sulfide
- EPR revealed [Fe₄S₄]¹⁺ cluster
- CxxxCxxC motif
- One iron atom is coordinated to SAM by the backbone carboxylate and amino groups

Fe₄S₄-SAM moiety

Radical SAM

- Suggested that SAM might be an evolutionary predecessor of adenosylcobalamin
- A predecessor could be expected to exist because the biosynthesis of adenosylcobalamin required thirty steps
 - Work from Ian Scott's lab at TAMU
- Postulated that SAM served as a source of 5'deoxyadenosyl radical
- Discovered that 5'-deoxyadenosyl moiety in LAM mediates hydrogen atom transfer
- Baker and Frey suggest that SAM is "the poor man's vitamin B₁₂"

Reductive cleavage of SAM

- The homolytic bond dissociation energy (HBDE) for the S-5'-C bond of SAM is ~60 kcal/mol
 - Too elevated to generate the 5'dA• by simple homolysis
 - Addition of low potential electron from cluster induces scission
- In contrast, the Co-C HBDE for coenzyme B₁₂ is 31 34 kcal/mol

Radical SAM family

- Lability of the cluster
 - Well established that [Fe₄S₄] clusters with three cysteine ligands are less stable than those coordinated by 4 cysteines
 - Radical-SAM [Fe₄S₄] clusters are highly oxygen sensitive
 - Oxidative degradation to [Fe₃S₄] or even [Fe₂S₂] clusters at same site
 - In available structures the [Fe₄S₄] cluster is located near surface
 - Experiments must be conducted under strict anaerobic conditions (O₂ < 2 ppm)

Protein	Function	Reference
LAM	Lysine 2,3aminomutase	Ruzicka et al., 2000
BlsG	Arginine 2,3-aminomutase	Cone <i>et al.</i> , 2003
Eam	Glutamate 2,3-aminomutase	Ruzicka & Frey, 2007
SplB	Spore photoproduct lyase	Rebeil et al., 1998
Desll	Desosamine biosynthesis	Trefzer et al., 1999
Littorine mutase	Alkaloid biosynthesis	Ollagnier et al., 1998
PFL activase	Glycyl radicalization	Wong <i>et al.</i> , 1993
ARR activase	Glycyl radicalization	Eliasson et al., 1990
BssD	Glycyl radicalization	Heider et al., 1999
Glycerol dehydratase	Glycyl radicalization	O'Brien et al., 2004
activase		-
Hydroxyphenylacetate	Glycyl radicalization	Yu et al., 2004
decarboxylase activase		
BioB	Biotin synthase	Duin et al., 1997
LipA	Lipovl synthase	Reed & Cronan, 1993
BchE	Bacteriochlorophyll biosynthesis	Suzuki et al., 1997
HemN	Coproporphyrinogen III oxidase	Akhtar, 1994
MoaA	Molybdopterin biosynthesis	Rieder et al., 1998
MiaB	Methylthiolation of tRNA	Esberg et al., 1999
TYW1	Wybusine biosynthesis in tRNA ^{Phe}	Nona et al 2006
ThiH	Biogenesis of thiazole in thiamine	Beglev et al., 1999
PqqE	Pyrroloquinoline quinone biosynthesis	Goodwin & Anthony, 1998
NifB	Nitrogenase FeMoCo maturation	Allen <i>et al.</i> , 1995
AtsB	Formylglycine formation in sulfatases	Fang <i>et al.</i> , 2004
ExsD	Succinoglycan production	Becker <i>et al.</i> , 1995
SpcY	Spectinomycin biosynthesis	Lvutzkanova et al., 1997
AlbA	Subtilosin biosynthesis	Zhang et al., 1999
SanA	Nicomycin biosynthesis	Möhrle et al., 1995
BcpD	Bialaphos biosynthesis	Thompson & Seto, 1995
MitD/MmcD	Mitomycin C biosynthesis	Mao et al., 1999
OxsB	Oxetanocin biosynthesis	Morita et al., 1999
Ems7	Fortimicin biosynthesis	Kuzuvama et al., 1995
Fom3	Fosfomycin biosynthesis	Kuzuvama et al. 1992
CloN6	Clorobicin biosynthesis	Westrich et al., 2003
Nclk-binding	Cdk5 activator binding	Ching et al., 2000
Best5	Interferon inducible protein	Grewal et al. 200
HvdE/HvdG	Cofactor maturation/[FeFe]	Posewitz et al., 2004
nyaeniyaa	bydrogenase	10500112 01 01., 2004
ΔνίΧ12	Enimerization in Avilamycin A	Bolleta/ 2006
ORF2	Cofactor maturation/amine	Ono et al. 2006
UNIZ	dehvdrogenase	010 et al., 2000
Elp3	Elongator complex function	Paraskevopoulou <i>et al.,</i> 2006
CofG/CofH	Coenzyme F(420) biosynthesis	Graham <i>et al.</i> 2003

Radical SAM enzymes

- 3 subclasses
- Class I enzymes
 - analogous to those that use coenzyme B₁₂
 - Cleave SAM reversible
 - At end of cycle SAM is regenerated
- Class II enzymes
 - Cleavage of SAM is irreversible
 - 5'-dA• radical abstracts a hydrogen atom from a glycyl residue, creating a glycyl radical
 - Glycyl radical is stable in the absence of O₂ and is itself regenerated after each turnover
- Class III enzymes
 - SAM is cleaved irreversible for each hydrogen atom abstracted (cosubstrate)

Spore photoproduct lyase

- When nutrients are not abundant some bacteria can go into a metabolically dormant spore state
 - Spores are highly dehydrated
 - Resistant to biocidal agents such as heat, UV radiation, and toxic chemicals
 - Bacteria were successfully cultured from spores isolated from 250 million year old salt crystals
 - Bacillus subtilis spores have survived aboard spacecraft when exposed to high vacuum, UV-radiation and cosmic rays of space
 - In spore state these bacteria form a specific type of UV-induced DNA damage called spore photoproduct

D. Barondeau - Chem 489 - Spring 2010

Spore photoproduct lyase

- Spore photoproduct lyase is a DNA repair enzyme found in sporulating bacteria
- Enzyme specifically repairs SP DNA lesions
- SP lyase is packaged in the dormant spore and repairs DNA early in germination
 - Independent of de novo protein synthesis
- Deletion of the SP lyase gene results in spores that are significantly more susceptible to UV-induced DNA damage and cell death
- Radical SAM enzyme (CXXXCXXC)

Clostridium botulinum QLPLVSGCMGMCEYCYLNTQMGKRPYTKVYVNTEEILNKAEKYSRERLPE Clostridium perfringens QLPLLSGCVGNCQYCYLNTNLGDKPYVKINVNVEDILNQAQKYIDERKPN Bacillus anthracis AIPLATGCMGHCHYCYLQTTLGSKPYVRVYVNLDEIFEKAQQYMDERAPE Bacillus subtilis AIPFATGCMGHCHYCYLQTTMGSKPYIRTYVNVEEILDQADKYMKERAPE consensus -1PlasGCmGhChYCYLnTtmGskPYvkvyVNveeIln-AqkYmdERaPe

 Has [Fe₄S₄]^{2+/1+} cluster in which one iron is bound to S-adenosylmethionine (SAM)

Spore photoproduct lyase

Class III Radical SAM enzymes

- Once defined as those that catalyze the insertion of sulfur atoms into unactivated C-H bonds
- Now apparent that there is far greater diversity of reactions
- Sulfur insertion, decarboxylation, methylthiolation, dehydrogenase, C-C bond formation and various complex transformations involved in the biosynthesis of cofactors and other natural products
- Best studies is probably biotin synthase

Biotin synthase (BS)

 Converts dethiobiotin (DTB) into biotin through formation of two C-S bonds on 2 non-activated carbons

- Requires SAM, but SAM is not the source of the sulfur
- Most now agree that BS contains 2 clusters a [Fe₄S₄] and [Fe₂S₂]

Function of biotin - CO₂ carrier

Biotin Synthase

- Biotin synthase is non-catalytic *in vitro* with less than 1 mole of biotin produced per mole of enzyme
 - No kinetic studies possible
- Biotin synthase itself is the sulfur source
- 2 hypotheses
 - Sulfur could come from [FeS] center
 - Sulfur could come from persulfide of unknown origin
- Reconstitution of [Fe₂S₂]²⁺ using ³⁴S²⁻ or ³⁵S²⁻ gave protein with labeled cluster that produced labeled biotin in vitro
- During formation of biotin, the amount of [Fe₂S₂]²⁺ decreases, whereas [Fe₄S₄]²⁺ does not
- How the sulfur is transferred is not known (could even form a transient persulfide species)
- In yeast, members of iron-sulfur cluster assembly (Isa1 and Isa2) are required for the activity of biotin synthesis
 - Isa1 and Isa2 suggested to function in regeneration of [Fe₂S₂] cluster

Biotin Synthase mechanism

First Half-Reaction

Second Half-Reaction

49

Biotin synthase structure

