Acetyl-CoA Synthase/ Carbon Monoxide Dehydrogenase (ACS/CODH)

A Ni-Fe-S-containing Bifunctional Enzyme with a Bio-organometallic Reaction Mechanism

Paul A. Lindahl

Departments of Chemistry and Biochemistry/Biophysics Texas A&M University, College Station, TX

Where are ACS/CODH's found?

Reactions catalyzed by the 310 kDa $\alpha_2\beta_2$ tetramer From *Moorella thermoacetica*:

 $\begin{array}{c} \text{CO/CO}_2 \text{ Redox } (\beta \text{ Subunit}): \\ \text{CO}_2 + 2\text{H}^+ + 2\text{e}^- \end{array} \xrightarrow{\text{(CODH)}} \text{CO} + \text{H}_2\text{O} \end{array}$

Acetyl-CoA Synthesis (α subunit): (ACS) (ACS) $(H_3^--Co^{3+}FeSP + CO + CoA \iff CH_3^-C-SCoA + Co^{1+}FeSP$

Recombinant α subunit also catalytic if incubate apo- α with Ni

Doukov et al., Science 2002 Darnault et al, Nature Structural Biology, 2003

Mechanism of the CODH Reaction

Controversy: Role of Bridging Sulfide in C-cluster

Carboxydothermus hydrogenoformans

Dobbek, Svetlitchnyi, Gremer, Huber, Meyer (2001) *Science 293*, 1281-1285.

Moorella thermoacetica

Doukov, Iverson, Saravalli, Ragsdale, Drennan, (2002) *Science 298*, 567-572.

Darnault, Volbeda, Kim, Legrand, Vernede, Lindahl, Fontecilla-Camps (2003) *Nature Structural Biology 10*, 271-279.

Proposal of Dobbek, Svetlitchnyi, Liss and Meyer (JACS 2004):

Bridging Sulfide is Required for Activity Incubation in CO abstracts S, forming COS and inactivating CODH

J. Am. Chem. Soc., 126 (17), 5382 -5387, 2004.

We tried the same experiment...

CO Oxidation Activity of $CODH_{Rr}$ in the Presence of Sodium Sulfide

 $CO + 2MV^{2+} \square CO_2 + 2MV^{1+} + 2H^+$

•CODH_{Rr} incubated in HS⁻ then assayed

•HS⁻ inhibited catalysis

Inhibition was partial

Lag phase evident

•HS⁻ bound CODH prior to catalysis, Yielding an inhibited state

•HS⁻ is expelled, and rebinds during turnover

Redox, EPR of C-Cluster

Effect of Sodium Sulfide on C_{red1} EPR Spectra

Increasing concentrations of sulfide

3000

 C_{red1} signal shifts to g = 1.95, 1.85, 1.70

C_{red2} signal does not shift

3400

Gauss

3800

4200

Implication for Substrate Binding to C-cluster

Effect of HS⁻ on activity and EPR similar to those of CN⁻ •Partial Inhibition •Binds C_{red1} not C_{red2} •CO incubation reactivates

Similarity to substrate HO⁻ (ENDOR shows binding to C_{red1} not C_{red2})

Proposal: Substrate HO⁻ binds like HS⁻ --- bridging between [Ni and Fe_a] in C_{red1} only

Model of Sulfide Inhibition

CO Oxidation Activity of CODH_{Mt} with HS⁻

From the model we can derive the rate equation...

Jeoung and Dobbek; *Science* 2007: Structure of the CO₂-bound intermediate

Observed: •Bridging OH in C_{red1} state •CO₂ Intermediate •No bridging Sulfide!

They Conclude...

"...the S2 ligand between Ni and Fe1 is absent in catalytically competent enzyme"

"The structure-based mechanism outlined agrees in all central aspects with the bimetallic mechanism proposed on the basis of EPR, ENDOR, and Mössbauer spectroscopy."

Mechanism of the ACS Reaction: Role of the Tunnel

A-Cluster in Open Conformation

Tunnel Network in ACS/CODH

Closed Conformation

Open Conformation

Hydrophobic Tunnel connects A- and C-clusters as well as the two C-clusters

In open conformation, tunnel to A-cluster is blocked

Tunnel controls delivery of CO to A-cluster

ACS Activity vs [CO]

Effect of Blocking Tunnel

Blockage between A and C-clusters: CODH activity unaffected ACS activity (using CO_2) ~ 0 ACS activity using CO – residual only No CO-cooperative inhibition

Blockage between C and C-clusters: Same as AC mutants but CODH activity ~ 5% of WT CO/CO2 may enter at beta:beta interface

Two Migration Pathways for CO used in ACS Catalysis

Tunnel Pathway:

CO enters at the $\beta\beta$ interface and migrates to the A-cluster Responsible for majority activity and CO cooperative inhibition Direct-binding Pathway:

> CO from solvent binds Ni_p of the A-cluster directly. Responsible for the residual activity Not associated with CO cooperative inhibition

Conclusions

- The tunnel delivers CO/CO₂ to the active sites; delivery is regulated by protein conformational change
- The tunnel region between A- and C-clusters is exclusively used for ACS reaction, not CODH reaction
- The tunnel region between the two C-clusters participates in the CODH reaction (and indirectly in the ACS reaction)
- CO/CO₂ may enter/exit the enzyme at the β - β interface
- The tunnel is involved in the cooperative inhibition by CO
- CO used in "majority" activity approaches Ni_p via tunnel
- CO used in residual activity approaches Nip via solvent

Mechanism of the ACS Reaction: Electronic Configuration of the A-cluster

Mössbauer Spectroscopy (Nuclear γ-Ray Resonance)

Useful for 57 Fe (I = 12) Systems All electronic and magnetic states observed (no "Mössbauer-Silent Fe) Intensity proportional to # of Fe atoms contributing

Redox States of the A-cluster

Obtained when potential > -500 mV vs. NHE No EPR Signals (i.e. not Ni¹⁺ or Ni³⁺); Ni_p is <u>2+</u> Mössbauer shows quadrupole doublet typical of S = 0 $[Fe_4S_4]^{2+}$

Electronic Assignment: $A_{ox} = \{[Fe_4S_4]^{2+} Ni_p^{2+}\}$ $S_{system} = 0$

CH₃-A_{ox}: Methylated State

Mössbauer shows S = 0 $[Fe_4S_4]^{2+}$ EPR silent (i.e. not Ni¹⁺ or Ni³⁺) i.e. Ni_p²⁺ Many examples of Ni²⁺-CH₃ model complexes Ni_p is required for methyl transfer; methylation blocks Ni_p removal Electronic Assignment: CH₃-A_{ox} = { $[Fe_4S_4]^{2+}Ni_p^{2+}-CH_3$ } S_{system} = 0

Bramlett et al, Biochemistry, 2006

 $\begin{array}{rrrr} A_{ox} & + 1e^{-} + CO & \rightleftarrows & A_{red} - CO \\ S=0 & & S=1/2 \end{array}$

NiFeC EPR signal (g_{\perp} = 2.08, g_{\parallel} = 2.03)

Mössbauer shows magnetic [Fe₄S₄]²⁺

Electronic Assignment: A_{red} -CO = {[Fe₄S₄]²⁺ Ni_p¹⁺-CO}

Catalytic Intermediate or Inhibitor of catalysis?

Bramlett et al, Biochemistry, 2006

A_{red-Act}: The Reductively Activated State $A_{ox} + CH_3 - Co^{3+}FeSP \longrightarrow No Reaction$ But in presence of low-potential reductant (e.g. dithionite, Ti³⁺ citrate)... $(A_{ox} + ne^{-}) + CH_3 - Co^{3+}FeSP \iff CH_3 - A + Co^{1+}FeSP$ 390 nm

Mechanistic Implications

Step 1: Reductive Activation: $\{[Fe_4S_4]^{2+} Ni_p^{2+}\} + ne^{-} \iff A_{red-act} \{?\}$ $S_{system} = 0 \text{ (or 1)}$ Step 2: Methylation: $A_{red-act} \{?\} + CH_3^{+} \iff \{[Fe_4S_4]^{2+} Ni_p^{2+}-CH_3\}$ $S_{system} = 0 \text{ (or 1)}$ Implications: $S_{system} \text{ for } A_{red-act} = 0 \text{ (or 1, 2 etc)}$ and n = 2

Steps 3 and 4: CO Insertion, CoASH attack: ${[Fe_4S_4]^{2+} Ni_p^{2+}-CH_3} + CO + CoASH \longrightarrow A_{red-act} {?}$ Acetyl-CoA The Heterogeneity Puzzle: For all labs, enzymes, preps...

Spin concentration of NiFeC EPR signal 0.2 - 0.3 spin/ α Quantification of methyl group transfer: 0.3 - 0.5 Me/ α Quantification of labile Ni removed and inserted: ~ 0.2 Ni/ α Mössbauer of A_{red}-CO: ~30% is S = $\frac{1}{2}$ [Fe₄S₄]²⁺; ~70% is S = 0 [Fe₄S₄]²⁺

What does this mean?

- ~ 30% functional α subunits
- Catalytically active
- •Labile Ni
- capable of NiFeC EPR

~70% nonfunctional α subunits

- * inactive
- * no labile Ni (Zn? Cu?)

4.2 K Mössbauer Spectra of α ; ca. 2006

Conclusions Regarding A_{red-act}

70% Component represents nonfunctional A-clusters ${[Fe_4S_4]^{1+}X}$ 30% Component represents functional A-clusters $A_{red-act} = S = 0$, ${[Fe_4S_4]^{2+}Ni_p^0}$

Objections to a Ni_p⁰ State

Ligands are inconsistent (not phosphines) But bridging thiolates might mimic phosphines...

Shouldn't a zero-valent Ni reduce $[Fe_4S_4]^{2+?}$ But Mössbauer study suggests $E^0_{cube2+/1+} < -800 \text{ mV}$

Two DFT computational studies disfavor { $[Fe_4S_4]^{2+} Ni_p^0$ } state. But E⁰ is very sensitive to environment \therefore difficult to model accurately

Two redox titrations suggest n = 1 (not n = 2) for reductive activation

Refitting of Data of Bhaskar, DeMoll, and Grahame, *Biochemistry*, 1998, 37, 14491-4499

Shouldn't the Fe₄S₄ be reduced in A_{red-act}??

Let's monitor reduction of $[Fe_4S_4]^{2+}$ cubane by Ti³⁺ citrate...

Reduction is slow relative to methylation rate (Nonfunctional form is probably becoming reduced)

Tan...Lindahl, JACS 2003

Competition Experiment: (Add reductant and CH_3 -Co³⁺FeSP Simultaneously to α_{ox})

Monitor at 390 nm (sensitive to both $[Fe_4S_4]^{2+}$ reduction and Co¹⁺)

CH₃ transfer (and reductive activation) > 100X faster than cubane reduction

Cubane NOT reduced fast enough to be the site of reductive activation But heterogenity could complicate interpretation...

A-cluster model complexes support n = 2, Ni_p⁰ –based Mechanism

Ito, Kotera, Matsumoto, Tatsumi (PNAS, 2009)

Also... Riordan, Rauchfuss, Holm, Darensbourg, Mascharak

Structurally Relevant Model Complexes display same essential chemistry!

In 2007, we stopped adding Ni to E coli and started running α on FPLC

(FPLC; Superdex gel filtration)

Dimer and tetramer have Activity; not monomer

Dimer: 0.5 Me/ α transferred 0.4 spin/ α NiFeC spin intensity

Dimer is heterogeneous (one functional subunit; one nonfunctional subunit)

(Tan, Kagiampakis, Surovtsev, Demeler, Lindahl, Biochemistry 2007)

Properties of Ni-activated Alpha Subunit Dimers

What does this mean?

Asymmetric Subunits in Ni-activated Dimer

EPR of reduced/CO dimer: NiFeC signal had 0.4 spin/ α (EPR of monomer apo- α showed only residual signal)

Mössbauer Spectra of reduced/CO dimer: 40% associated with $S = \frac{1}{2} A_{red}$ -CO state 60% associated with $S = 0 [Fe_4S_4]^{2+}$ inactive clusters

When considered with methyl group transfer quantification, (0.5 Me/ α)

Indicates that alpha dimers consist of **asymmetric subunits** * One "catalytic" subunit (accepts Me group; exhibits NiFeC) * One "structural" subunit

Could heterogeneity be functionally required??

Tentative Conclusions Regarding Dimerization

Alpha subunits dimerize when Ni binds to the proximal site of the A-cluster

Dimerization (Oligomerization) is specific for M²⁺ ions that prefer square-planar geometries (Ni, Pd, Pd)

This geometry at the proximal site enforces a particular subunit conformation (i.e. open) that is conducive to dimerization

One subunit of the dimer is catalytic and in the open conformation while the other is structural and in the closed conformation

Apo- α + Ti(III) citrate ca. 2008

~ 100% is S = 1/2 $[Fe_4S_4]^{1+}$ cluster – no redox heterogeneity

4.2 K Mössbauer of $[\alpha(Ni)]_2$ + Ti(III) Citrate

20% S = $\frac{1}{2}$ [Fe₄S₄]¹⁺

 $\begin{array}{ll} 52\% \; S = 0 \; \{ [Fe_4S_4]^{1+} \; Ni^{1+} \} & \delta = 0.56 \; mm/s \; \Delta E_Q = 1.25 \; mm/s \\ 22\% \; S = 0 \; \{ Fe_4S_4]^{1+} \; Ni^{1+} \} & \delta = 0.55 \; mm/s \; \Delta E_Q = 0.47 \; mm/s \end{array}$

Coupled state proposed by Brunold and Field, based on DFT

4.5 K 0.05T Mössbauer of A-Cluster containing subunit from *Methanosarcina thermophila*

Kinetic Model for the ACS Reaction:

Kinetic Modeling of the Acetyl-CoA Synthesis Mechanism

Tan, Surovtsev, Lindahl, JACS 2007

Monitoring the Kinetics of Methyl Group Transfer – Relatively Easy

$$Ni^0 + CH_3 - Co^{3+} \rightleftharpoons Ni^{2+} - CH_3 + Co^{1+}$$

$$k_{+met} = 15 \ \mu M^{-1} s^{-1}$$

 $k_{-met} < 0.05 \ \mu M^{-1} s^{-1}$
 $K_{met} > 300$

Competition Reaction to Monitor Kinetics of CO Insertion - *More difficult*

0

Α

Monitoring Acetyl Group Transfer - Difficult

Works – but simulations must include CO inhibition

Predictions of Model...

- $Ni^{0} + CH_{3} Co^{3+} FeSP \implies Ni^{2+} CH_{3} + Co^{1+} FeSP \qquad K_{met}$ $Ni^{2+} CH_{3} + CO \implies Ni^{2+} C(O)CH_{3} \qquad K_{ins}$
- $Ni^{2+}-C(O)CH_3 + CoA \implies CH_3C(O)-CoA + Ni^0 \qquad K_{CoA}$

 $CO + CoA + CH_3 - Co^{3+}FeSP \rightleftharpoons CH_3 - C(O) - CoA + Co^{1+}FeSP \qquad K_{ACS}$

$$K_{met} \cdot K_{ins} \cdot K_{CoA} = K_{ACS}$$

> 300 \cdot 3.3 \mu M^{-1} \cdot 0.66 = \cdot > 660 \mu M^{-1}

Actual lower limit $K_{ACS} > 0.03 \ \mu M^{-1}$

Predictions of the Model...

Seravalli, Kumar, Ragsdale Biochemistry 2002

Simulation shows decay of inhibitory Ni:CO state reaching a non-zero steady-state upon reacting with CH_3 - Co^{3+} , CO and CoA as observed experimentally

3500

Predictions of the Model...

Steady-State Ca	atalysis	
Fixed conditions as commonly used Calculated % in each intermediate state		
Found:	Ni ⁰ , Ni ²⁺ -CH ₃ Ni ²⁺ -C(O)CH ₃ Ni:CO	0.2% 95% 0.3% 4.4%

Distribution of Enzyme States During

According to these computations, CO Insertion is Rate Limiting Step

Sensitivity Analysis

Rate Coefficient k	$\frac{\varDelta \upsilon_0 / \upsilon_0}{\varDelta k / k}$
k _{+met}	0.339
k _{-met}	-0.002
k_{+ins}	0.657
k _{-ins}	-0.0004
k _{+CoA}	0.002
k _{-CoA}	0.001
k_{+CO}	-0.332
k	0.317

Acetyl-CoA Synthesis Mechanism (*circa* May 2006)

Conclusions

ACS/CODH catalyzes the synthesis of Acetyl-CoA from CO, CoA And a methyl group donated by a corrin protein

Active site A-cluster is a novel { $[Fe_4S_4]-Ni_p Ni_d$ } cluster.

A _{ox} :	${[Fe_4S_4]^{2+}Ni_p^{2+}Ni_d^{2+}}$
A _{red-act} :	{ $[Fe_4S_4]^{2+} Ni_p^0 Ni_d^{2+}$ } or { $[Fe_4S_4]^{1+} Ni_p^0 Ni_d^{2+}$ }
CH ₃ -A _{ox} :	${[Fe_4S_4]^{2+}Ni_p^{2+}-CH_3Ni_d^{2+}}$

Heterogeneity and batch-to-batch variations cause confusion Ni-dependent oligomerization

Chemical kinetic study:

- reductive activation
- Methyl group transfer
- CO insertion (slow step, probably involves protein conf. change)
- CoA attack, forming product

Acknowledgements

Texas A&M

Drs. Xiangshi Tan and Ivan Surovtsev Matthew Bramlett, Huay-Keng Loke, Ernie Maynard, David Barondeau, Woonsup Shin

Collaborators Eckard Münck and Audria Stubna (Carnegie Mellon) Juan Fontecilla-Camps and Anne Volbeda (Grenoble) David Grahame (Uniformed Services University of the Health Sciences)

Funding National Institutes of Health