Vitamin B12

CHEM 489 March 2nd, 2010

> Blake Whitlow Ruben Lopez III

Linked Disease

Pernicious Anemia

- Often seen in the elderly
- Lack of the Intrinsic
 Factor in the stomach
- Vegetarians, not true for lacto-ovo vegetarians
- The common symptom is fatigue

History of B₁₂

Dr. Newcastle

Fed anemic patients his regurgitated gastric juices

Dr. Whipple

- Bled dogs to induce anemia
- Raw liver cured the fastest

Minot and Murphy

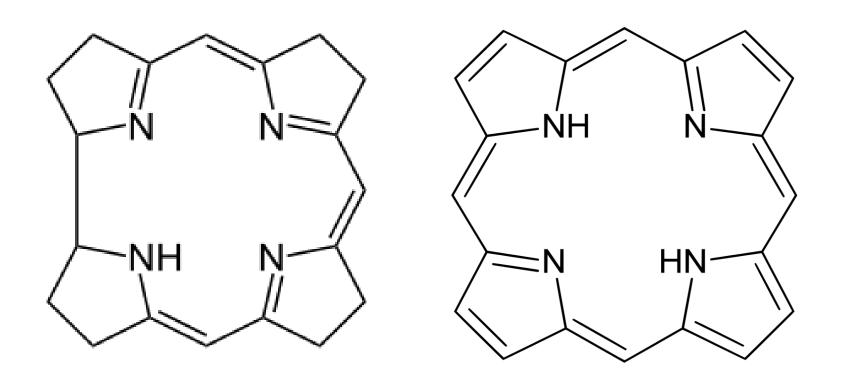
 Confirmed that the key compound was within the liver tissue

Karl A. Folkers and Alexander R. Todd

Discovered, Isolated, and named cobalamine

Structure of Cyanocobalamin B₁₂

- Dr. Dorothy Crowfoot Hodgkin
 - 1950's
 - X-RayCrystallography

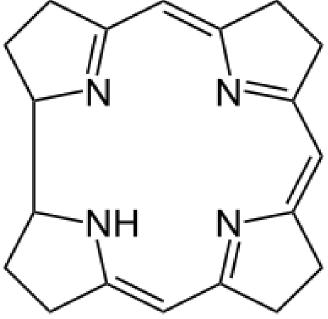

FIGURE 1 The molecular structure of B_{12} (cyanocobalamin) with rings A–D, side chains a–g, and ring carbon atoms 1–19 labeled.

Functions of B₁₂

- Involved in the metabolism of every cell of the body
 - DNA synthesis and regulation
- Used to regenerate folate in the body
 - Most B12 deficient symptoms are actually folate deficient symptoms
 - Due to poor synthesis of DNA when the body does not have a good supply of folic acid for the creation of thymine

Folic Acid

Corrin vs. Porphyrin



Corrin Ring

Porphyrin Ring

Corrin vs. Porphyrin

- High number of sp³ carbon centers
- More flexible
- Not as flat as a porhpyrin ring
- Relatively high rigidity and resistance to change in electronic structure
- Two tautomeric forms

Cobalamins

$$\begin{array}{c} \text{H}_2\text{NOC} \\ \text{H}_2\text{NOC} \\ \text{H}_3\text{C} \\ \text{H}_3\text{C} \\ \text{H}_4\text{CONH}_2 \\ \text{H}_2\text{NOC} \\ \text{H}_3\text{C} \\ \text{H}_4\text{CONH}_2 \\ \text{H}_2\text{NOC} \\ \text{H}_3\text{C} \\ \text{H}_4\text{CONH}_2 \\ \text{H}_2\text{CONH}_2 \\ \text{H}_4\text{CONH}_2 \\ \text{H}_4\text{CONH}_2 \\ \text{H}_5\text{CONH}_2 \\ \text{H}_4\text{CONH}_2 \\ \text{H}_5\text{CONH}_2 \\ \text$$

Scheme 1.14 Vitamin B_{12} , methylcobalamin and coenzyme B_{12} .

Known Enzymatic Reactions

Figure 11.28 Reactions catalyzed by coenzyme B_{12} -dependent enzymes.

1,2 Shift Mechanism

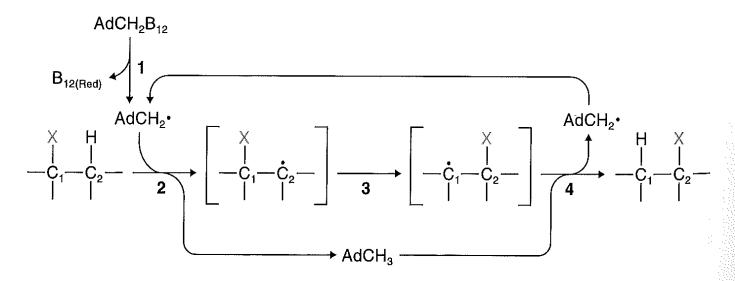
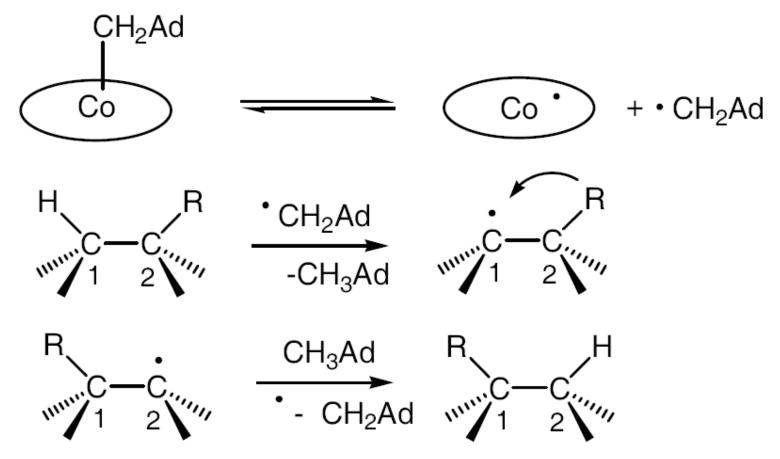


Figure 11.29
Mechanistic scheme for the 1,2-shift that occurs in many coenzyme B₁₂-activated enzymes.

2. Methyl (-CH₃) group transfers between two molecules


$$Co-Ado = Co(II) + Ado$$

$$Co-Me + B = Co(I) + BMe^+$$

- B denotes a neutral or anionic nucleophile
- Homolytic Fission
- Heterolytic Fission

The Ado (5'-deoxyadenosyl) ligand.

1. Rearrangements in which a hydrogen atom is directly transferred between two adjacent atoms with concomitant exchange of the second substituent, X, which may be a carbon atom with substituent, an oxygen atom of an alcohol, or an amine.

Homolytic Cleavage:

- •A reaction where a hydrogen and a group on an adjacent carbon atom exchange places.
- •Takes place by way of a radical mechanism. (i.e. Deoxyadenosyl Radical)
- •These rearrangements are very rare in organic chemistry.

Deoxyadenosyl Radical was Characterization:

- •Electron Paramagnetic resonance signals formed when diol dehydrase and five equivalents of coenzyme B₁₂ were incubated.
- •Shows the generation and persistance of deoxyadenosyl radical.

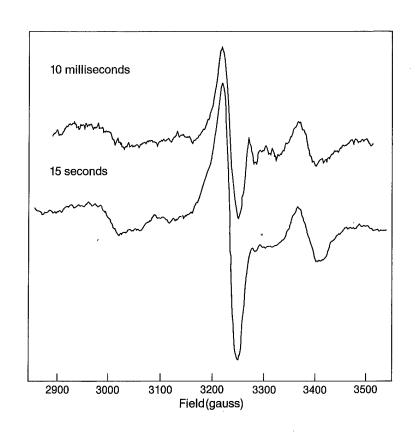
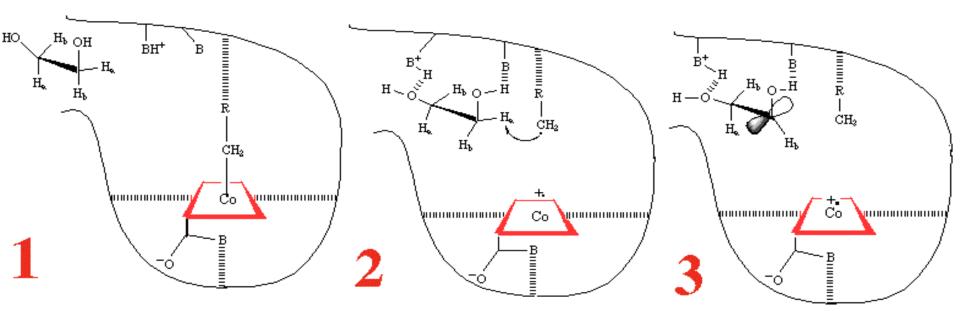
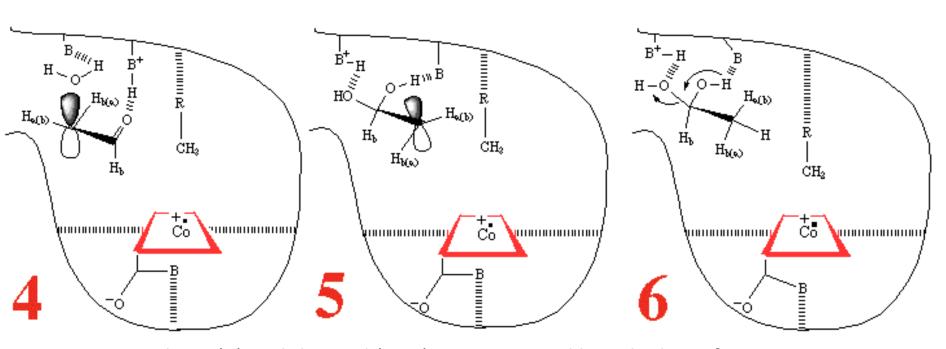



Figure 11.30 Electron paramagnetic resonance signals formed when diol dehydrase and five equivalents of coenzyme B_{12} were incubated with 1,2-propanediol, showing the generation and persistence of the deoxyadenosyl radical. (Adapted from J. E. Valinsky et al., *Journal of the American Chemical Society* **96**, 4709–4710 (1974)).

Mechanism of Cobalt-Carbon Bonding:



Step 1: substrate (1,2-dihydroxyethane) approaches the holoenzyme, attempting to plug the reaction 'bottle'.

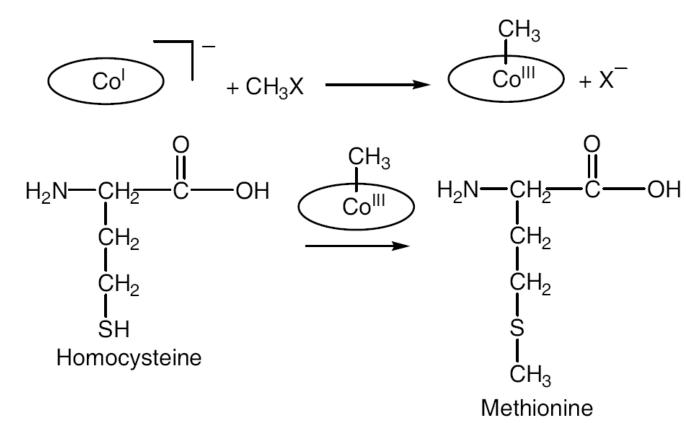
- **Step 2:** -cobalt-carbon bond breaks homolyticallly.
 - -is now weakened by binding of the metalloenzyme to the large coenzyme.

Step 3: hydrogen atom taken from substrate by the 5'-deoxyadenosyl radical creating a methyl.

Mechanism of Cobalt-Carbon Bonding:

Step 4: enzyme base (B) and the acid (BH+) cause assisted beta-hydroxy fragmentation. (i.e. loss of water molecule)

Step 5: re-addition of a water molecule, resulting in a substrate reorientation of C2 towards the 5'deoxyadenosyl methyl.


Step 6: substrate dehydration and release of ethanal and a water molecule.

Methionine synthase:

2. Methyl (-CH₃) group transfers between two molecules

- -Ability to suppress the protonation of cobalt I.
- -Ability to change the equilibrium constant for methyl transfer.

Heterolytic Cleavage:

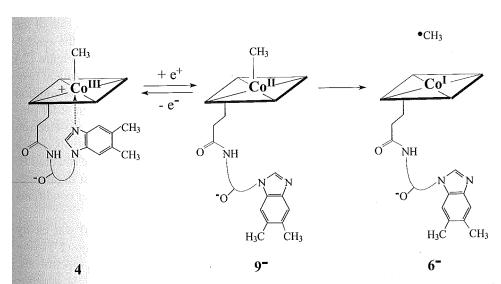
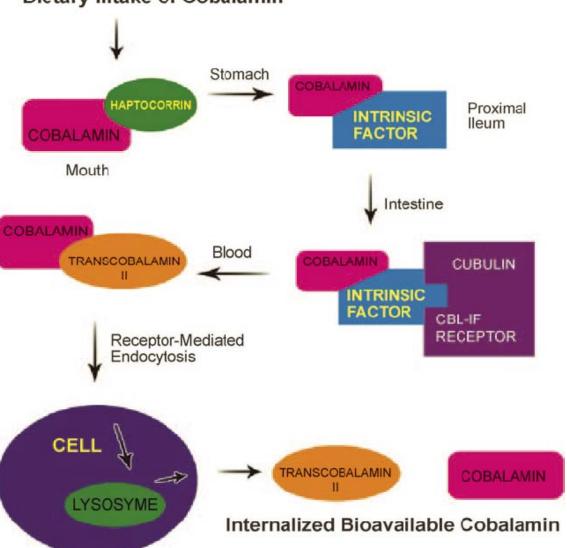
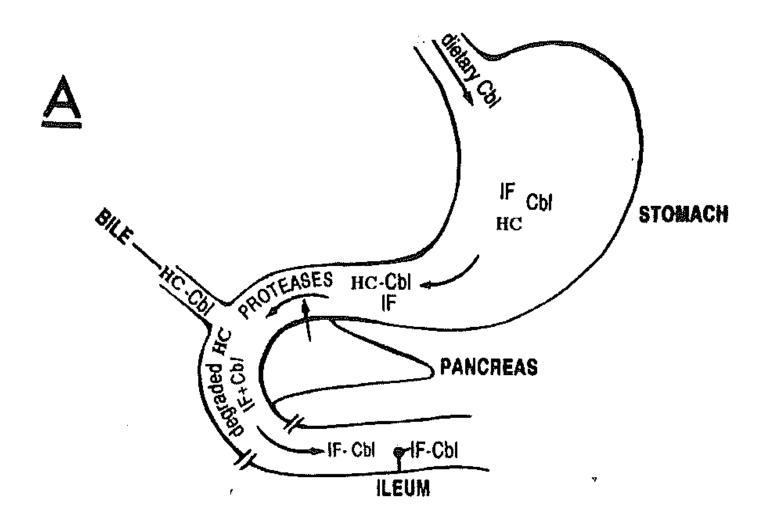
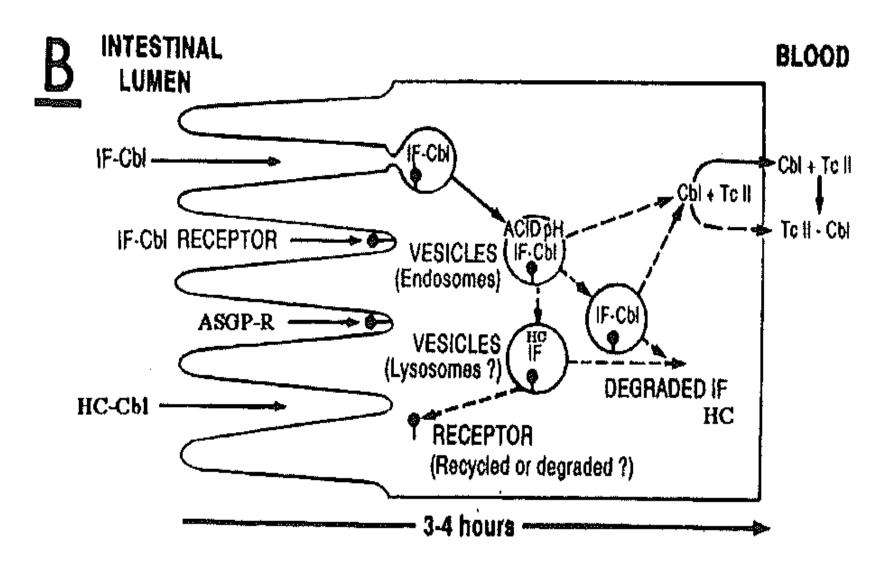



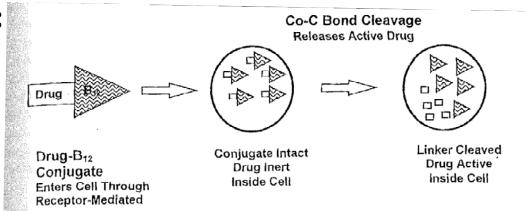
FIGURE 11 The one-electron reduction of methylcob(III)alamin (4) gives methylcob(II)alamin anion (9⁻) and occurs with decoordination of the nucleotide base; methylcob(II)alamin anion (9⁻) rapidly decomposes into cob(I)alamin (6⁻) and a methyl radical.


- For Methyl transfer reactions involving CH3-B12, Co(I) is involved. Reaction catalysed by methionine synthase. This involves two methyl group transfers:
- Me-cob(III)alamin + homocysteine ---> cob(I)alamin + methionine
- cob(I)alamin + methyltetrahydrofolate ---> Me-cob(III)alamin + tetrahydrofolate


Dietary Intake of Cobalamin

- Intrinsic Factor
- Haptocorrin
- Transcobalamin II

Property	IF	Hc	TC-II
Production	Gastric body Medium-sized ducts (salivary, pancreatic)	Granulocytes, yolk sac, mammary glands, salivary acini, and ducts	Most tissues
Carbohydrate M _r	15% 45 kDa (human) ^a 55 kDa (hog) ^d	33–40% 60 kDa (rabbit) ^b 58 kDa (human) ^e	0 44 kDa (human) ^c
# subunits # Cbl binding sites	1	1 1	1 1
K _a for Cbl*	1–4 nM ^a 4.7–5.8 ^g	0.1 nM ^e 3.5–4.3 ^g	0.02 nM ^f 6.4 ^c



B₁₂ as a Drug Transport Vehicle

In order to take advantage of the

pathway shown in slide 20:

 Need to couple B₁₂ with the peptide/protein such that neither molecule obstructs the other

FIGURE 6 The inactive drug-cobalamin bioconjugate enters cancer cells through receptor-mediated endocytosis. Once the biconjugate is inside the cell, the linker between cobalamin and the drug is cleaved through a process that may be enzymatic or may depend upon the redox state or pH of the intracellular environment.

- Used to deliver therapeutic peptides
- Potential to aid absorption from the gastrointestinal tract increase plasma-residency time
- Limited by the quantity of B₁₂ that may be absorbed from the intestinal lumen with a given dose

References:

1.)	Lenhert , P.G.; Hodgkin, D.C. <i>Nature</i> 1961 <i>192</i> , 937
2.)	Lenhert, P.G. <i>Proc.Roy.Soc.</i> 1968 A303, 45
3.)	Mancia, F.; Keep, N.H.; Nakagawa, A.; Leadlay, P.F.; McSweeney, S.; Rasmussen, B.; Bosecke, P.; Diat, O.; Evans, P.R. Structure 1996, 4, 229
4.)	Briat, B.; Djerassi, C. Soc. Chim. France 1969 135
5.)	Johansen, H.; Ingraham, L. L.; <i>J. Theor. Biol.</i> 1969 <i>23</i> , 191
6.)	C. Brink, D. C. Hodgkins, J. Lindsey, J. Pickworth, J. H. Robertson, J. G. White, Nature 1954 174, 1169
7.)	J. M. Pratt, <i>Inorganic Chemistry of Vitamin</i> B_{12} , Academic Press, London 1972
8.)	Gaudemer, A., Zylber, J., Zylber, N., Baran-Maraszac, M., Hull, W. E., Fountoulakis, M., Konig, A., Wolfle, K., Retey, J. 1981 Eur. J. Biochem. 199, 279-285
9.)	Leutherner, B., Leutwein, C., Shulz, H., Horth, P. Haehel, W., Schiltz, E., Schagger, H., Heilder, J. 1998, Mol. Microbiol. 28, 615-628
10.)	Lu. WP., Harder, S. R., Ragsdale, S. W. 1990 , <i>J. Biol. Chem.</i> 265, <i>3124-</i> 3133
11.)	Jarret, J. T. Choi, C. Y., Matthews, R. G. 1997 , <i>Biochemistry</i> 1926 , <i>15739-15748</i>
12.)	Rusling, J. F., Miaw, CL., Couture, E. C. 1990 , <i>Inorg. Chem.</i> 1929 , <i>2025</i> -2027
13.)	B. Briat, C. Djerassi, Bull. Soc. Chim. France 1969 135
14.)	Jerrett, J. T., Choi, C. Y., Matthews, R. G. 1997 , <i>Biochemistry 36, 15739-15748</i>
15.)	Lexa, D., Saveant, Soufflet, J. P. 1979 , J. Electroanal. Chem. 100, 159-172
16.)	Schefford, R., Rytz, G., Walder, L. 1983, Modern Synthetic Methods. Transition Metals in Organic Synthesis pp. 335-440
17.)	Rusling, J. F., Miaw, CL., Couture, E. C. 1990 , <i>Inorganic. Chem.</i> 29, 2025-2027
18.)	Connors, T. F., Arena, j. V., Rusling, J. F. 1988 , <i>J. Phys. Chem.</i> 92, 2810-2816
19.)	Scheffold, R. 1988, <i>Nachr. Chem. Tech. Lab.</i> 1936 , 261-267
20.)	Auer, L., Weymuth, C., Scheffold, R. 1993, Helv. Chim. Acta. 1976, 810-818
21.)	Busato, S., Tinembart, O., Zhang, Zd., Scheffold, R. 1990, tetrahedron 46, 3155-3166
22.)	Busato, S., Scheffold, R. 1994 , <i>Helv. Chim. Acta.</i> 77, 92-99
23.)	Steiger, B., Walder, L., Scheffold, R. 1986 , <i>Chimia</i> 40, 93
24.)	Howard, W. A., Bayomi, A., Natarajan, E., Aziza, M. A., El-Ahmady, O., Grissom, C. B., West, F. G. 1997, <i>Bioconj. Chem.</i> 8, 498-502
25.)	Ramanujam, K. S., Seetharam, S., Seetharam, B. 1992, Biochem. Biophys. Res. Comm. 182, 439-446