π (Olefin) Complexes and Metalloccenes

Lecture 7
The Novel: Olefin Polymerization and Isomerization

The Characters:

• Olefin Complexes
• Metalloccenes
• Bent Metalloccenes
• Metal Hydrides and Alkyls
• Alkyl Insertion Reactions
• Beta-H Elimination Reactions
• Stereoregular Catalysis
• Asymmetric Catalysis
Olefin to Metal Binding

\[\sigma\text{-donation via the filled alkene } \pi\text{-system} \]
\[\pi\text{-back donation via the empty alkene } \pi^*\text{-system} \]

Influences of Metal Oxidation State and of Olefin on Bonding

\[\text{Pt}(2+) \quad \text{C} = \text{C} = 1.37\text{Å} \quad \text{Zeiss's Salt} \]
\[\text{Pt}(0) \quad \text{C} = \text{C} = 1.43\text{Å} \]
\[\text{Pt}(+2) \quad \text{C}--\text{C} = 1.49\text{Å} \quad \text{metalallocyclopropane} \]
<table>
<thead>
<tr>
<th>Ethylene Complex</th>
<th>νC=CN (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Ethylene</td>
<td>1623</td>
</tr>
<tr>
<td>$[\text{Ag}(\text{H}_2\text{C}=\text{CH}_2)_2]^+$</td>
<td>1584</td>
</tr>
<tr>
<td>$\text{Fe(CO)}_4(\text{H}_2\text{C}=\text{CH}_2)$</td>
<td>1551</td>
</tr>
<tr>
<td>$[\text{Re(CO)}_4(\text{H}_2\text{C}=\text{CH}_2)_2]^+$</td>
<td>1539</td>
</tr>
<tr>
<td>$[\text{CpFe(CO)}_2(\text{H}_2\text{C}=\text{CH}_2)]^+$</td>
<td>1527</td>
</tr>
<tr>
<td>$\text{Pd}_2\text{Cl}_4(\text{H}_2\text{C}=\text{CH}_2)_2$</td>
<td>1525</td>
</tr>
<tr>
<td>$[\text{PtCl}_3(\text{H}_2\text{C}=\text{CH}_2)]^-$</td>
<td>1516</td>
</tr>
<tr>
<td>$\text{CpMn(CO)}_2(\text{H}_2\text{C}=\text{CH}_2)$</td>
<td>1508</td>
</tr>
<tr>
<td>$\text{Pt}_2\text{Cl}_4(\text{H}_2\text{C}=\text{CH}_2)_2$</td>
<td>1506</td>
</tr>
<tr>
<td>$\text{CpRh(H}_2\text{C}=\text{CH}_2)_2$</td>
<td>1493</td>
</tr>
</tbody>
</table>

All are lower. Why?

Propose a structure for the Rh complex. And the others as well! . . .
Problem: To which of the following (each with a single open coordination site) will trifluoroethylene bond to the most strongly? Why?

a) [Diagram of a coordination complex with a question mark]

b) [Diagram of a coordination complex with a question mark]

c) [Diagram of a coordination complex with a question mark]

R_C≡C_R

M

R_C≡C_R

M_M
Chelating diolefins

norbomadiene complex

cyclooctadiene complex

\[
\text{Ni} \quad \text{BF}_4^- \\
\text{Ir} \quad \text{PCy}_3 \quad \text{PF}_6^-
\]
Problem: The \(\text{Cp}_2\text{Rh}_2[\mu-(\text{CF}_3\text{C}≡\text{CCF}_3)](\text{CO})(\text{CNR}) \) complex shown above has a Rh-Rh bond distance of 2.67 Å, strongly indicating a covalent bond between the rhodium atoms. How would you electron count this complex to accommodate a Rh-Rh covalent bond?
Electronic structure and properties

TM

4p
a₂u, e₁u

4s
a₁g

3d
a₁g, e₁g, e₂g

2Cp

e₁u

a₁g

e₂g

a₂u

e₂u

e₂g, e₂u

VCp₂

CrCp₂

MnCp₂

FeCp₂

CoCp₂

NiCp₂

18 Valence e⁻, Closed shell

Diamagnetic
Thermally and air stable
Reversible Fe²⁺/Fe³⁺ potential

http://www.ilpi.com/organomet/cp.html
<table>
<thead>
<tr>
<th></th>
<th>Cp₂V</th>
<th>Cp₂Cr</th>
<th>Cp₂Mn</th>
<th>Cp₂Fe</th>
<th>Cp₂Co</th>
<th>Cp₂Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>purple</td>
<td>red</td>
<td>amber</td>
<td>orange</td>
<td>purple</td>
<td>green</td>
</tr>
<tr>
<td>m.p.</td>
<td>162</td>
<td>172</td>
<td>193</td>
<td>173</td>
<td>173</td>
<td>173</td>
</tr>
<tr>
<td>d count</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td># unpaired</td>
<td>3</td>
<td>2</td>
<td>5/1*</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>M-C distance</td>
<td>2.28</td>
<td>2.17</td>
<td>2.38</td>
<td>2.06</td>
<td>2.12</td>
<td>2.20</td>
</tr>
</tbody>
</table>

*Exists in both high and low spin states in thermal equilibrium
Derivatization of Ferrocene:

苯 \xrightarrow{RCOCl \text{ or } (RCO)_2O, \text{AlCl}_3 \text{ catalyst, reflux, anhydrous conditions}} \text{RCO}_R

苯：

\begin{align*}
\text{RCO}_R & \xrightarrow{\text{AlCl}_3} \text{RCOCl}_R \\
\text{RCO}_R & \xrightarrow{\text{AlCl}_3} \text{RCO}_R
\end{align*}

\text{Fe} + [\text{CH}_3\text{CO}]^+ \xrightarrow{\text{H}^+} \text{Fe}

\text{Fe} + [\text{CH}_3\text{CO}]^+ \xrightarrow{\text{H}^+} \text{Fe}
Lithiation of ferrocene:

"Ferrocene" Pauson, 1951

1-lithio-ferrocene

1,1'-dilithio-ferrocene
Pyrazolyl borate: A Cp wannabee or Trofimenko’s scorpionate ligand
Structure and chemistry of bis(cyclopentadienyl)-MLn complexes

Figure 1. Interaction diagram for a D_{5d} metalocene. The frontier orbitals are in the box.

Figure 2. Cp$_2$M orbitals as a function of the bending angle θ. Bending is from an eclipsed D_{5d} form, but the labels at left are given for both D_{5d} and D_{5h} geometries.
Figure 3. Contour diagram, in the yz plane, of the three important Cp_2M orbitals, computed at $\theta = 136^\circ$. From top to bottom: $2a_1$, b_2, $1a_1$. Solid line = positive and dashed line = negative contour of the wave function. The contours are at intervals of 0.02.
Bent Metalloccenes

General form
16-electron
18-electron

18-electron
18-electron

Coordination Chemistry Reviews
Volume 250, Issues 1–2, January 2006, Pages 242–258

Ansa Metalloccenes

ML_n

Metalloccene Complexes as Catalysts for Olefin Polymerization
Bent Metallocenes as Pro-Catalyst for Olefin Polymerization

What is MAO?

Helmut G. Alt, Erik H. Licht, Andrea I. Licht, Katharina J. Schneider

Metallacyclic metallocene complexes as catalysts for olefin polymerization

Coordination Chemistry Reviews, Volume 250, Issues 1–2, 2006, 2–17

http://dx.doi.org/10.1016/j.ccr.2005.01.016
Mechanism of Olefin Polymerization

Scheme 13. Proposed mechanism of Ziegler-Natta polymerization of C₂H₄ using the homogenous catalyst Cp₂ZrCl₂/MAO.
Metallacycles from Bent Metalloccenes
Metallacycles from Bent Metallocenes

R = alkyl, aryl

Helmut G. Alt, Erik H. Licht, Andrea I. Licht, Katharina J. Schneider

Metallacyclic metallocene complexes as catalysts for olefin polymerization

Coordination Chemistry Reviews, Volume 250, Issues 1–2, 2006, 2–17

http://dx.doi.org/10.1016/j.ccr.2005.01.016
What is the structure of $(C_5H_5)_2Fe(CO)_2$?
Is there an Fe analogue to the bent metallocene? No.

Ring Whizzing in Cp complexes—a part of the history of F. Albert Cotton
Ring Slippage in Cp complexes

\[\text{CpRe(CO)}_3 \xrightarrow{\text{PMe}_3} \text{CpRe(CO)}_2(\text{PMe}_3) \]