Lecture: Overview of

Organometallic Reactions

Chapter 7 Meisler and Spessard

Reaction type	Schematic example	Δ Oxidation state of M	Δ Coordination number of M	Δe^{-} count	Text section
Ligand substitution	$L'' + L_n ML' \longrightarrow L_n ML'' + L'$	0	0	0	7-1
Oxidative addition	$L_nM + X-Y \longrightarrow L_nM(X)(Y)$	+2	+2	+2	7-2
Reductive elimination	$L_n M(X)(Y) \longrightarrow L_n M + X - Y$	-2	-2	-2	7-3
1,1-Insertion ^a	$L_n M - X = Z \longrightarrow L_n M - X - Y$	0	-1	-2	8-1-1
1,2-Insertion ^a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	-1	-2	8-1-1
Nucleophilic addition ^b	$ \begin{array}{c} Y \\ \downarrow \\ L_n M \longrightarrow \\ Z \end{array} + \text{Nuc:}^- \longrightarrow [L_n M - X - Z - \text{Nuc}]^- \end{array} $	0 ^c	0	0	8-2
Nucleophilic abstraction ^b	$\begin{array}{c} O \\ \blacksquare \\ L_n M - CR + Nuc - H \longrightarrow L_n M - H + Nuc - CH \end{array}$	ξ 0	0	0	8-3
Electrophilic addition ^b	$L_nM-X=Z + E^+ \longrightarrow [L_nM=X-Z-E]^+$	0	0	0	8-4
Electrophilic abstraction ^b	$L_nM-X-Z-Y + E^+ \longrightarrow L_nM^+ - \prod_Z^X + E-Y$	0	0	0	8-4
\mathbf{L} π - and σ -Bond metathesis ^d	$ \begin{array}{cccccc} R & R \\ I & I \\ C & C \\ II \\ C \\ C \\ C \\ R' \\ R' \end{array} \xrightarrow{X \\ W} X \xrightarrow{W} X \xrightarrow{R-C=C-R} + or \\ R'-C=C-R' \\ R'-C=C-R' \end{array} $	X - W Y - Z			11-1 and 11-

Table 7 1 C 60 : .: Matal D ...

^aThe reverse reaction, called *deinsertion* or elimination, is also possible.

^bThere is no one general reaction; several variations are possible.

^cDepends upon change in hapticity; e.g., X=Z going from η^3 to η^2 results in a 2 e⁻ reduction.

 $^{d}\Delta$ oxidation state, coordination number, and e⁻ count are not applicable here, especially in π -bond metathesis where the metal complex is a catalyst.

Organometallic Chemistry

Spessard

Copyright © 2010 by Oxford Linivaraity Proce Inc.

7-1 Ligand Substitution

1

Table 7-1 Common Reactions of Organotransition Metal Complexes

Reaction Type	∆ Schematic Example	Oxidation state of M	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	∆e- Count	Text Section
Ligand substitution	$L_2 + L_n M L_1 \rightarrow L_n M L_2 + L_1$	0	0	0	7-1
Oxidative addition	$L_n M + X - Y \rightarrow L_n M(X)(Y)$	+2	+2	+2	7-2
Reductive elimination	$L_n M(X)(Y) \rightarrow L_n M + X - Y$	-2	-2	-2	7-3
	$\begin{array}{ccc} Y & Z \\ \downarrow & & \\ L_n M - X = Z & \rightarrow & L_n M - X - Y \\ & & & 1 \end{array}$	0	-1	-2	8-1-1
1,2-Insertion ^a	$\begin{array}{c} Y \\ I \\ X \\ L_n \\ M \\ Z^2 \end{array} \rightarrow \begin{array}{c} L_n \\ M \\ X \\ Z^2 \end{array} \rightarrow \begin{array}{c} L_n \\ M \\ Z^2 \\ I \\ Z^2 \end{array}$	0	-1	-2	8-1-2
Nucleophilic addition ^b	$L_n M - \frac{X}{Z} + Nuc: \rightarrow [L_n M - X - Z - Nuc]^{-1}$	0 ^c	0	0	8-2
Nucleophilic abstraction ^b	$O \qquad O \\ \parallel \\ L_n MCR + Nuc-H \rightarrow L_n M - H + Nuc-CR$	0	0	0	8-3
Electrophilic addition ^b	$L_n M - X = Z + E^+ \rightarrow [L_n M = X - Z - E]^+$	0	0	0	8-4
Electrophilic abstraction ^b	$L_n M - X - Z - Y + E^{\dagger} \rightarrow L_n M^{\dagger} - \frac{X}{Z} + E - Y$	0	0	0	8-4

*The reverse reaction, called deinsertion or elimination, is also possible.

^b There is no one general reaction; several variations are possible.

^c Depends upon change in hapticity; e.g., X=Z going from $\eta 3 \rightarrow \eta 2$ results in a 2 e⁻ reduction.

Ligand Substitution Reactions

Associative (A):

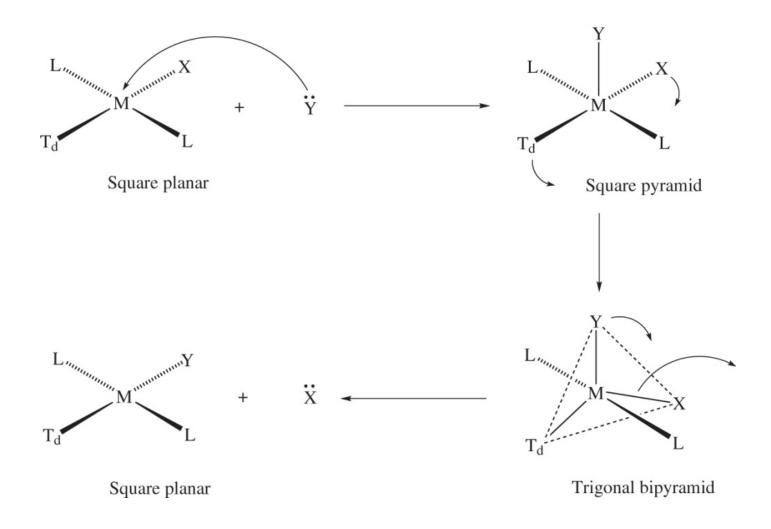
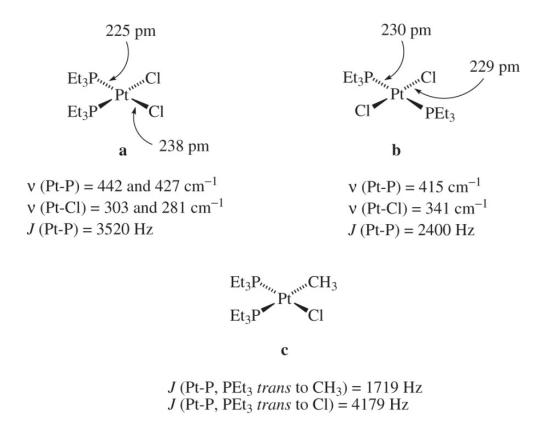

 $L_{n}ML' + L'' \xrightarrow{\qquad slow \qquad} L_{n}ML'L'' \xrightarrow{\qquad fast \qquad} L_{n}ML'' + L'$ Dissociative (D): $L_{n}ML' \xrightarrow{\qquad slow \qquad} L_{n}M \xrightarrow{\qquad L'' \qquad} L_{n}ML'' \xrightarrow{\qquad h \qquad} L_{n}ML''$

Illustration from page 178

Organometallic Chemistry


Spessard Copyright © 2010 by Oxford

Associative Process for Ligand Substitution in Square Planar Complex

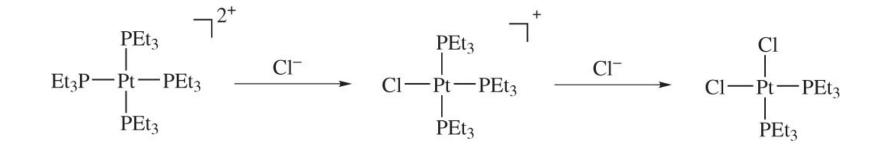
Question: What properties of T_{d} , X, Y facilitate this reaction??

Thermodynamic Trans Influence

Organometallic Chemistry Spessard Copyright © 2010 by Oxford

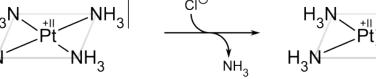
Kinetic Trans Effect

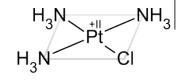
Table 7-2 Effect of *trans* Ligand on Rate at 25 °C for the Reaction *trans*-Pt(Cl)(R)(PEt₃)₂ + Py \rightarrow [*trans*- Pt(Py) (R)(PEt₃)₂]⁺ + Cl⁻


R	<i>k</i> (M ⁻¹ s ⁻¹)
H⁻	4.2
CH₃ [−]	6.7 × 10 ⁻²
Ph⁻	1.6 × 10 ⁻²
CI⁻	4×10^{-4}

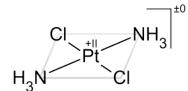
Spessard Copyright © 2010 by Oxford

 $H_{3}N \xrightarrow{+\parallel} NH_{3} \xrightarrow{2^{\oplus}} Cl^{\Theta} \xrightarrow{Cl^{\Theta}} H_{3}N \xrightarrow{+\parallel} NH_{3} \xrightarrow{+\parallel} Cl^{\Theta} \xrightarrow{Cl^{\Theta}} Cl^{\Theta} \xrightarrow{+\parallel} NH_{3} \xrightarrow{+\parallel} Pt \xrightarrow{Cl^{\Theta}} Cl^{\Theta} \xrightarrow{+\parallel} NH_{3} \xrightarrow{+\parallel} Pt \xrightarrow{+\parallel} Rh_{3}$

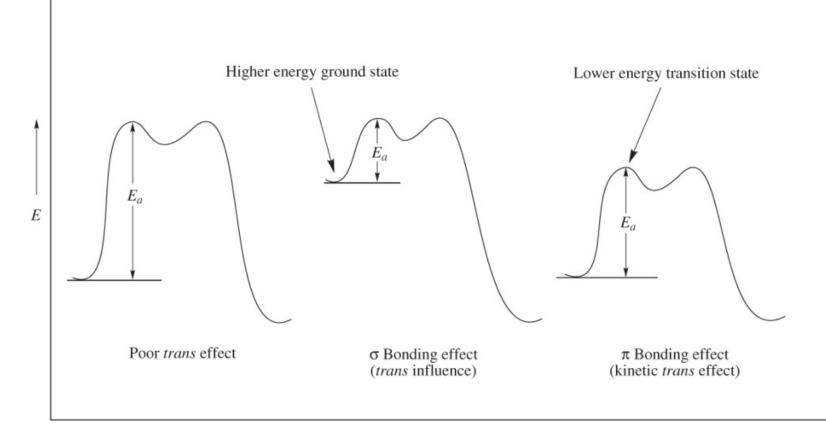


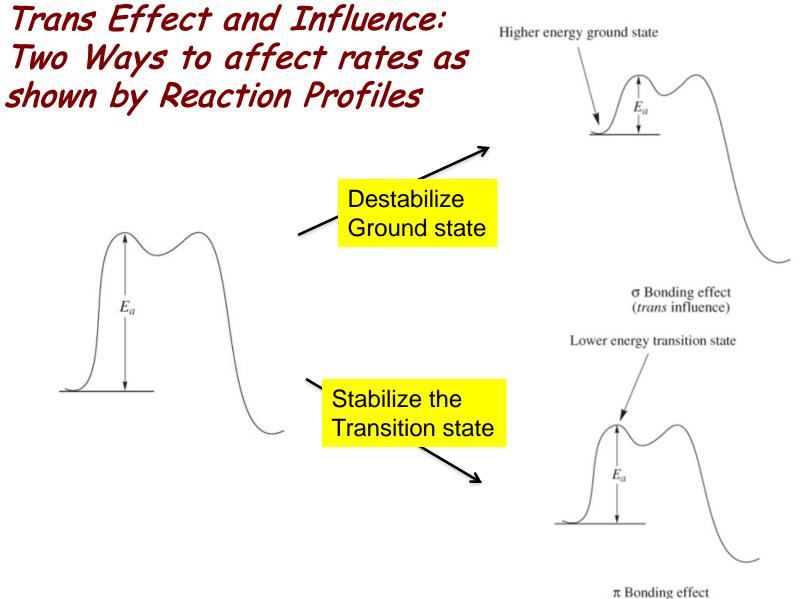





(weak) F⁻, HO⁻, H₂O <NH₃ < py < Cl⁻ < Br⁻ < l⁻, SCN⁻, NO₂⁻, SC(NH₂)₂, Ph⁻ <

 $SO_3^{2-} < PR_3 < AsR_3$, SR_2 , $H_3C^- < H^-$, NO, CO, NC⁻, C_2H_4 (strong)





Trans Effect and Influence: Reaction Profiles

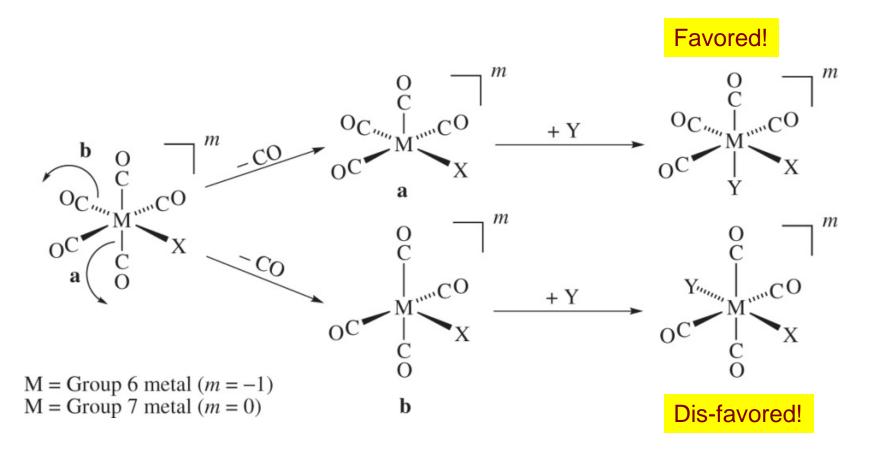
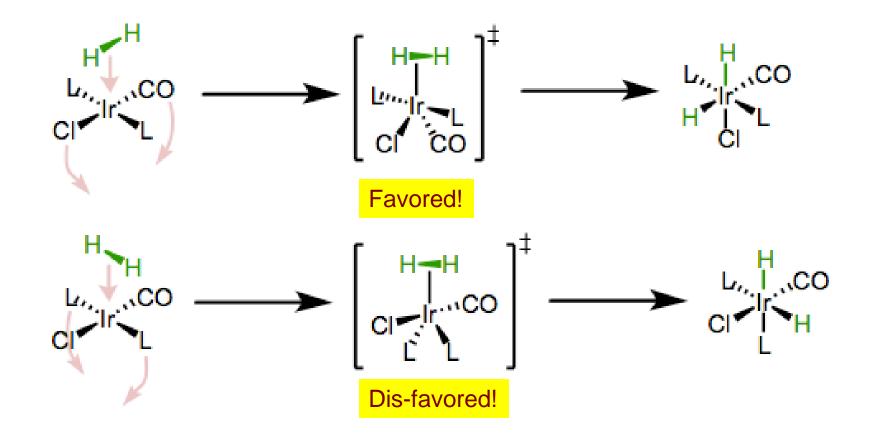
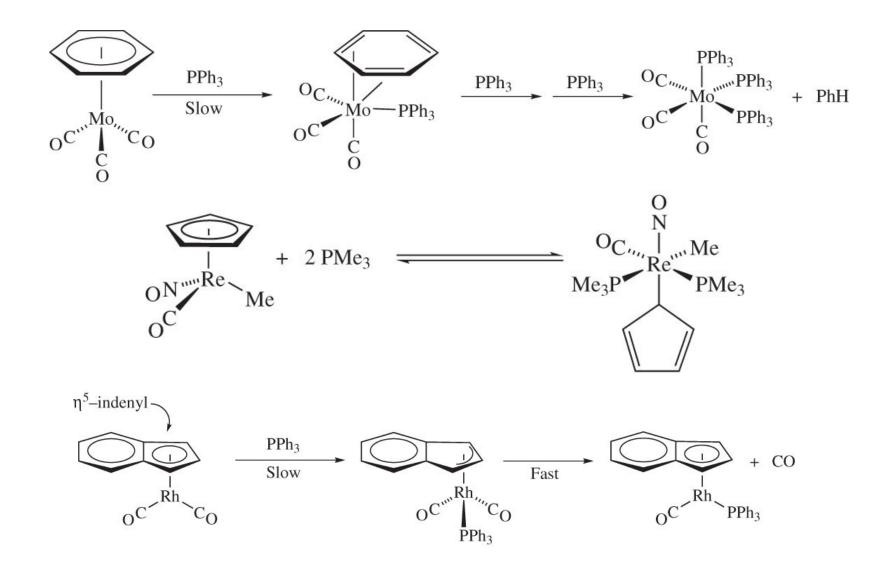


Figure 7-2 Activation Energy and the *trans* Effect The depth of the energy curve for the intermediate and the relative heights of the two maxima will vary with the specific reactants.



⁽kinetic *trans* effect)

Figure 7-5 Intermediates in the Dissociative Substitution of M(CO)₅X Complexes: cis-labilizing effect of X ligands



The importance of the transition state in H_2 oxidative addition

What are the factors that favor the cis vs. trans- $L_2Ir(CO)(CI)(H)_2$ isomers?

Associative Ligand Substitution Reactions in 18electron complexes: Does not use 20-e intermediates

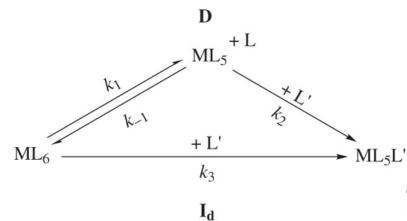
Classic Dissociative Reaction

Dissociative Reactions: rate = k[M-CO]

 $cis-Mo(CO)_4(PR_3)_2 + CO \longrightarrow Mo(CO)_5(PR_3) + PR_3$

 Table 7-3³⁷ Rates of Ligand (L) Replacement by CO at 70 °C

L	Cone angle (°)	Rate constant (sec ⁻¹)	Δ <i>H</i> ‡(kcal/mol)	Δ <i>S</i> [‡] (eu)ª
Phosphines				
PMe ₂ Ph	122	<1.0 x 10 ⁻⁶		
PMePh ₂	136	1.33 x 10⁻⁵		
PPh ₃	145	3.16 x 10 ⁻³	29.7	14.4
PPhCy ₂ ^b	162	6.40 x 10 ⁻²	30.2	21.7
Phosphites				
P(OPh) ₃	128	<1.0 x 10 ⁻⁵		
P(O-o-tol) ₃ ^c	141	1.60 x 10 ⁻⁴	31.9	14.4


^aeu = cal/mol-K.

 ${}^{b}Cy = cyclohexyl.$

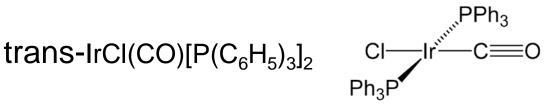
^co-tol = ortho-toluyl (o-methylphenyl).

Organometallic Chemistry Spessard Copyright © 2010 by Oxford

Competing Dissociative and Interchange-Dissoc. Reaction Pathways

Table 7-4^a Activation Parameters for Ligand Substitution of M(CO)₆ with PBu₃

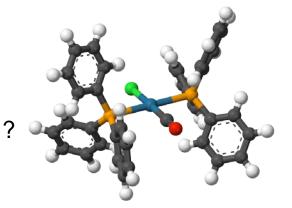
м	Δ <i>H</i> ₁ ^{‡b}	ΔS ₁ ^{‡c}	ΔH_3^{\dagger}	ΔS ₃ [‡]
Cr	40.2	22	25.5	-15
Мо	31.6	6.7	21.7	-15
W	39.9	14	29.2	-6.9

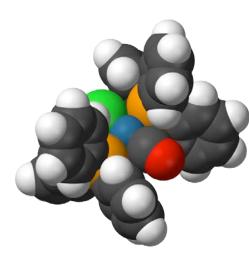

^aR. J. Angelici and J. R. Graham, *J. Am. Chem. Soc.*, **1966**, 88, 3658 and R. J. Angelici and J. R. Graham, *Inorg. Chem.*, **1967**, *6*, 2082.

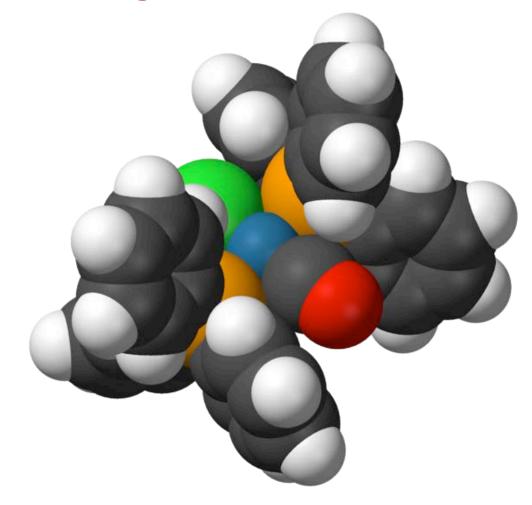
^bkcal/mol.

^cEntropy units (eu), cal/mol-K.

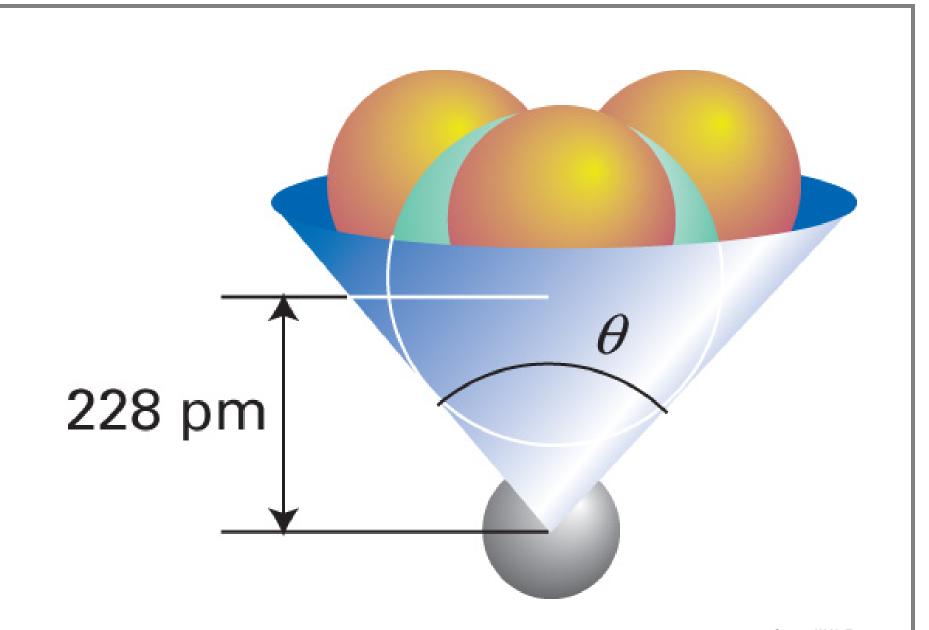
Organometallic Chemistry Spessard Copyright © 2010 by Oxford






Synthesis might be trans-effect directed: $Ir(PR_3)_4^+$ +

Problems: PPh_3 ligand is too large; CONE ANGLE = 145°



Space-filling model of Vaska's Complex

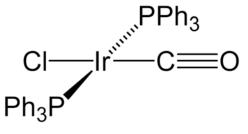
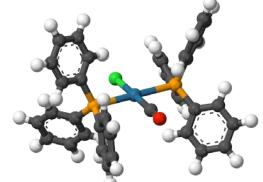

© 2009 W.H. Freeman

Table 21.7 Tolman cone angles for various ligands				
Ligand	$\theta / ^{\circ}$	Ligand	$\theta \swarrow^{\circ}$	
CH ₃	90	$P(OC_6H_5)_3$	127	
СО	95	PBu ₃	130	
Cl, Et	102	PEt ₃	132	
PF ₃	104	η ⁵ -C ₅ H ₅ (Cp)	136	
Br, Ph	105	PPh ₃	145	
I, P(OCH ₃) ₃	107	η ⁵ -C ₅ Me ₅ (Cp*)	165	
PMe ₃	118	$2,4-Me_2C_5H_3$	180	
<i>t</i> -Butyl	126	P(<i>t</i> -Bu) ₃	182	

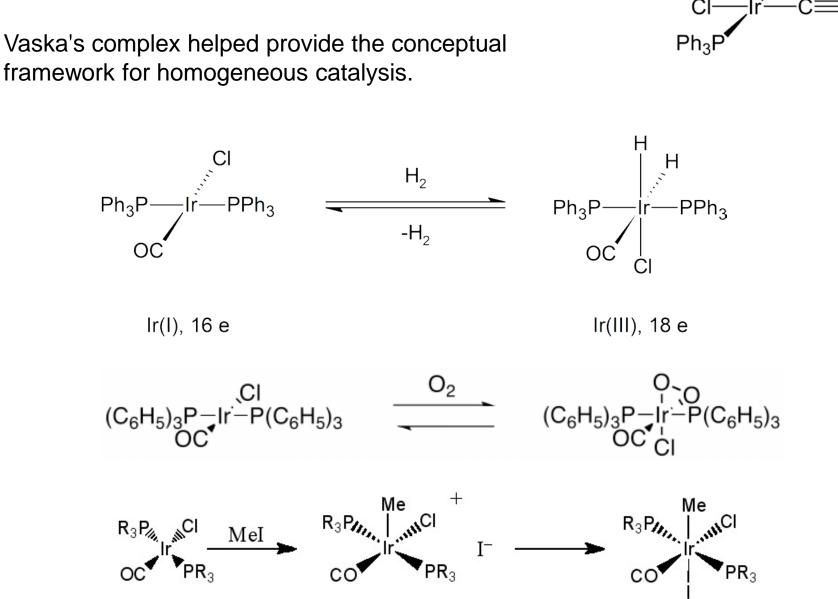
W. H. EEMAN

trans-IrCl(CO)[P(C₆H₅)₃]₂

Synthesis might be trans-effect directed: $Ir(PR_3)_4^+$ +

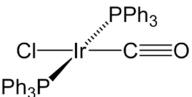

Problems: PPh_3 ligand is too large; CONE ANGLE = 145°

Alternate way:


```
IrCl_{3}(H_{2}O)_{3} + 3 P(C_{6}H_{5})_{3} + HCON(CH_{3})_{2} + C_{6}H_{5}NH_{2}
```

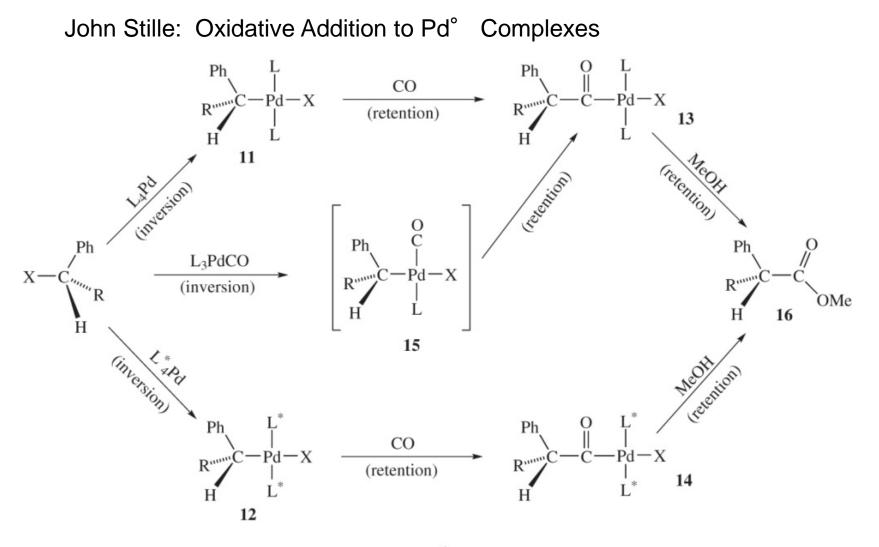
 $IrCl(CO)[P(C_{6}H_{5})_{3}]_{2} + [(CH_{3})_{2}NH_{2}]Cl + OP(C_{6}H_{5})_{3} + [C_{6}H_{5}NH_{3}]Cl + 2H_{2}O$

Why 3 PPh₃?



Vaska's complex trans-IrCI(CO)[P(C₆H₅)₃]₂ Cŀ Vaska's complex helped provide the Ph₃ conceptual framework for homogeneous catalysis.

Vaska's complex trans-IrCI(CO)[P(C₆H₅)₃]₂


Vaska's complex helped provide the conceptual

Mechanism Type	Species Adding to ML _n	Number of steps	Stereochemistry at carbon	Stereochemistry of new ligands on the metal
3-Center Concerted ^a	H–H, C–H, C–C, Ar–X, Vinyl–X	One	Retention of configuration	cis
Polar	X–X	Two	N/A	trans
S _N 2-like	Me–X, Allyl–X, Benzyl–X	Two	Inversion of configuration	<i>trans</i> (usually)
Radical	R–X (R≠Ar, vinyl, Me, allyl, benzyl)	Multiple	Racemization	Variable

 Table 7-7
 Oxidation Addition Pathways

^aOther concerted mechanisms are possible (see Section 7-2-1).

 $R = D \text{ or } CH_3$; $L = PPh_3$; $L^* = PEt_3$; X = Br or Cl

Scheme 7.7 Stereospecific Reactions of Palladium Complexes

Spessard Copyright © 2010 by Oxford University Press, Inc.

basic fransformations in Organometanic Chemistry

1. ligand substitution

$$L_n M^{q} - L$$
 $(L_n M^{q}) + L$ dissociative
 $L_n M^{q} - L + L'$ $L_n M^{q} - L' + L$ associative

2. external attack at ligands by nucleophiles and electrophiles

$$L_{n}M^{q/q-2} = X + Nu^{-} \qquad \qquad L_{n}M^{q-2} - X - Nu^{-}$$

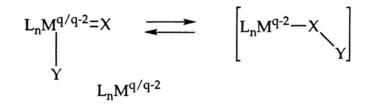
$$(X = CO, CNR, CR_{2}, etc.; Nu^{-} = R^{-}, OR^{-}, etc;)$$

$$L_{n}M^{q} = X + E^{+} \qquad \qquad L_{n}M^{q} - X - E^{+}$$

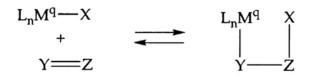
$$(X = olefin, acetylene, oxo, etc; E^{+} = H^{+}, R^{+}, etc)$$

$$L_{n}M^{q} - R + Nu^{-} \qquad \qquad L_{n}M^{q-2}^{-} + RNu$$

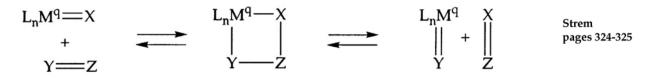
3. oxidative addition/reductive elimination * (X-Y = H₂, R-H, H-Cl, R-Br, etc)


$$[L_n M^q] + X - Y \qquad \longrightarrow \qquad L_n M^{q+2}$$

(*involves change in electron count and valency at metal of 2)


J.E. Ber

Basic Transformations in Organometallic Chemistry


4. α migratory insertion/elimination (X = CO, CNR, CR₂, NR, O; Y = H, R, OR, *etc*)

5. β migratory insertion/elimination (X = H, R; Y = Z = olefin, ketone, *etc*)

6. reversible 2+2 addition (X = CR_2 , NR, O; Y=Z = olefin, ketone, *etc*)

Basic Transformations in Organometallic Chemistry

7. σ bond metathesis (X,Y = H, R; Z = H)

8. "1,2 addition/elimination" (X = O, NR, CR_2 ; Y-Z = RO-H, H_2 , R-H)