CHEM 462 – Fall 2016 M. Darensbourg

Worksheet I Coordination Chemistry Review

C							
1. Can assign ox oxidation state a			-	nd give o	l-electron	count of tra	nsition metal. Check:
$Cr(H_2O)_6^{3+}$	$H_2O)_6^{3+}$		$\left[CrCl_2(H_2O)_4\right]^+$			Mn(CO) ₅	$OsO_4^=$
Ni(CN) ₄ ²⁻		NiC	142-		1	Ni(CO) ₄	HFe(CO) ₄
Cp_2TiCl_2		Cp_2I	Fe				
2. Can predict geometries and from geometries of complexes, predict crystal field, dorbital splitting diagrams, electron assignment, and magnetism:							
Ni(CN) ₄ ²⁻	$Ni(CN)_4^{2-}$		NiCl ₄ ²⁻		Ni(CO) ₄		$Pt(NH_3)_6^{4+}$
$Co(NH_3)_6^{2+}$		Co(N	$\text{Co(NH}_3)_6^{3+}$		trans $\left[CoCl_2(NH_3)_4\right]^+$		-
trans Ir(Cl)(CO)	$(PR_3)_2$						
3. Know the basis of spectrochemical series. Order the following in terms of ligand field strength:							
OH^-	H_2O	\bar{F}	NH_3	CN	PR_3	H^-	C_2H_4
4. Lewis Acids /Bases and HSAB. Which of the ligands above are "hard" and which are "soft" donors?							
5. Predict the co	mposition an	d geon	netries of t	he follo	wing:		
(a) the ammi	ine complex	of Ru(I	I) (NH ₃)				
(b) the carbo	onyl complex	of Cr(0)				
(c) the bromide complex of Co(II)							
(d) the phenanthroline complex of Co(III)							
(e) the ammine complex of Cu(II)							
(f) the ethyle	enediamine c	omplex	of Cr(II)				

6.	Consider the following list of species and indicate by number (in the spaces prov	ided) those
spe	pecies that possess the indicated property. Note that a given species may posses mo	re than one
(or	or none) of the indicated properties.	

(1)	0-1	$\Delta TT \lambda^2$
(1)	Cru	$(OH_2)_6^2$

(5) Pt(NH₃)₂Cl₂

(9) $Fe(C_2O_4)_3^{4^-}$

(2)
$$Fe(CN)_{6}^{4^{-}}$$

(6) $MnO_4^{2^-}$

 $(10) Zn(EDTA)^{2-}$

(3)
$$Pt(CN)_4^{2^-}$$

 $(7) \text{ HgI}_{4}^{2^{-}}$

(4)
$$Ir(en)_3^{3^+}$$

(8) $Co(NCS)_4^{2^-}$

(a)	paramagne	etic

(b) inert to ligand substitution

(d) tetragonally distorted from regular octahedral geometry

- (e) tetrahedral complex
- (f) chelate complex
- (g) capable of existing in isomeric form
- 7. Indicate which of the following complexes would be expected to be inert to ligand substitution:

(a)
$$\text{FeF}_{6}^{3^{-}}$$

(g)
$$Co(NH_3)_6^{3^+}$$

(m)
$$Rh(NH_3)_6^{3^+}$$

(b) Ni(OH₂)
$$_{6}^{2^{+}}$$

(h)
$$Co(NO_2)_6^{3^-}$$

(c)
$$Cr(OH_2)_6^{2^+}$$

(i)
$$Zn(OH_2)_6^{2^+}$$

(d)
$$Fe(CN)_6^4$$

(j)
$$Sc(OH_2)_6^{3^+}$$

(e)
$$Cr(NH_3)_6^{3^+}$$

(k)
$$Ru(NH_3)_6^{3^+}$$

(q)
$$Fe(OH_2)_6^{3^+}$$

(f)
$$Co(NH_3)_6^{2^+}$$

(l)
$$V(OH_2)_6^{3^+}$$

(r)
$$Co(OH_2)_6^{3^+}$$