MOLECULAR SYMMETRY

Know intuitively what "symmetry" means - how to make it quantitative?

Will stick to isolated, finite molecules (not crystals).

SYMMETRY OPERATION

Carry out some operation on a molecule (or other object) - e.g. rotation. If final configuration is INDISTINGUISHABLE from the initial one - then the operation is a SYMMETRY OPERATION for that object. The line, point, or plane about which the operation occurs is a SYMMETRY ELEMENT

N.B. "Indistinguishable" does not necessarily mean "identical".

e.g. for a square piece of card, rotate by 90° as shown below:

i.e. the operation of rotating by 90° is a symmetry operation for this object

Labels show final configuration is NOT identical to original.

Further 90^o rotations give other indistinguishable configurations - until after 4 (360^o) the result *is* identical.

Motions of molecule (rotations, reflections, inversions etc. - see below) which convert molecule into configuration indistinguishable from original.

SYMMETRY ELEMENTS

Each element is a LINE, PLANE or POINT about which the symmetry operation is performed. Example above operation was rotation, element was a ROTATION AXIS. Other examples later. Summary of symmetry elements and operations:

Symmetry element Symmetry operation(s)

E (identity)

- C_n (rotation axis) C_n^{1} C_n^{n-1} (rotation about axis)
- σ (reflection plane) σ (reflection in plane)
- i (centre of symm.) i (inversion at centre)
- S_n (rot./reflection axis) $S_n^{1}...S_n^{n-1}$ (n even) (rot./reflection about axis) $S_n^{1}...S_n^{2n-1}$ (n odd)

Notes

(i) symmetry operations more fundamental, but elements often easier to spot.

(ii) some symmetry elements give rise to more than one operation - especially rotation - as above.

Some examples for different types of molecule: e.g.

Line in molecular plane, bisecting HOH angle is a rotation axis, giving indistinguishable configuration on rotation by 180°.

By VSEPR - trigonal, planar, all bonds equal, all angles 120°. Take as axis a line perpendicular to molecular plane, passing through B atom.

F(2)

Symbol for axes of symmetry

where rotation about axis gives indistinguishable configuration every (360/n)^o (i.e. an n-fold axis)

Thus H_2O has a C_2 (two-fold) axis, BF_3 a C_3 (three-fold) axis. One axis can give rise to >1 rotation, e.g. for BF_3 , what if we rotate by 240°?

Must differentiate between two operations. Rotation by 120° described as C_3^{1} , rotation by 240° as C_3^{2} . In general C_n axis (minimum angle of rotation (360/n)^o) gives operations C_n^m, where both m and n are integers.

When m = n we have a special case, which introduces a new type of symmetry operation.....

IDENTITY OPERATION

For H_2O , C_2^2 and for $BF_3 C_3^3$ both bring the molecule to an IDENTICAL arrangement to initial one.

Rotation by 360^o is exactly equivalent to rotation by 0^o, i.e. the operation of doing NOTHING to the molecule.

xenon tetrafluoride, XeF₄

cyclopentadienide ion, C₅H₅⁻

benzene, C₆H₆

Examples also known of C_7 and C_8 axes.

If a C_{2n} axis (i.e. even order) present, then C_n must also be present:

Therefore there must be a C_2 axis coincident with C_4 , and the operations generated by C_4 can be written:

$$C_4^{1}, C_4^{2} (C_2^{1}), C_4^{3}, C_4^{4} (E)$$

Similarly, a C_6 axis is accompanied by C_3 and C_2 , and the operations generated by C_6 are:

 $C_6^{1}, C_6^{2} (C_3^{1}), C_6^{3} (C_2^{1}), C_6^{4} (C_3^{2}), C_6^{5}, C_6^{6} (E)$

Molecules can possess several distinct axes, e.g. BF₃:

Three C_2 axes, one along each B-F bond, perpendicular to C_3

Operation = reflection

Element = plane of symmetry

Greek letter 'sigma'

Several different types of symmetry plane - different orientations with respect to symmetry axes.

By convention - highest order rotation axis drawn VERTICAL. Therefore any plane containing this axis is a VERTICAL PLANE, σ_v .

e.g. H₂O plane above (often also called $\sigma(xz)$)

Can be >1 vertical plane, e.g. for H_2O there is also:

σ(yz) - reflection leaves all atoms unshifted, therefore symmetry plane

This is also a vertical plane, but symmetrically different from other, could be labelled σ_v '.

Any symmetry plane PERPENDICULAR to main axis is a HORIZONTAL PLANE, σ_h . e.g. for XeF₄:

Plane of molecule (perp. to C₄) is a symmetry plane, i.e. σ_h)

Some molecules possess additional planes, as well as σ_v and σ_h , which need a separate label. e.g. XeF4

Four "vertical" planes - but two different from others.Those along bonds called σ_v , but those bisecting bonds σ_d - i.e. DIHEDRAL PLANES

Usually, but not always, σ_v and σ_d differentiated in same way.

Two final points about planes of symmetry:

(i) if no C_n axis, plane just called σ ;

(ii) unlike rotations, only ONE operation per plane. A second reflection returns you to original state,

i.e.
$$(\sigma)(\sigma) = \sigma^2 = E$$

INVERSION : CENTRES OF SYMMETRY

Involves BOTH rotation AND reflection. OPERATION : INVERSION ELEMENT : a POINT - CENTRE OF SYMMETRY or INVERSION CENTRE.

Best described in terms of cartesian axes:

The origin, (0, 0, 0) is the centre of inversion. If the coordinates of every point are changed from (x,y,z) to (-x, -y, -z), and the resulting arrangement is indistinguishable from original - the INVERSION is a symmetry operation, and the molecule possesses a CENTRE OF SYMMETRY (INVERSION) (i.e. CENTROSYMMETRIC) e.g. trans-N₂F₂

In practice, inversion involves taking every atom to the centre - and out the same distance in the same direction on the other side.

Symbol - same for operation (inversion) and element (centre): Another example: XeF₄

As for reflections, the presence of a centre of symmetry only generates one new operation, since carrying out inversion twice returns everything back to start.

$$(x, y, z) \xrightarrow{i} (-x, -y, -z) \xrightarrow{i} (x, y, z)$$
 i.e. (i)(i) = i² = E

Inversion is a COMPOSITE operation, with both rotation and reflection components. Consider a rotation by 180° about the z axis:

Follow this by reflection in the xy plane

BUT individual components need not be symmetry operations themselves.....

e.g. staggered conformation of CHCIBr-CHCIBr

Inversion at centre gives indistinguishable configuration.

The components, of rotation by 180^o or reflection in a plane perpendicular to the axis, do not.

If, however, a molecule does possess a C_2 axis and a σ_h (perpendicular) plane as symmetry operations, then inversion (i) must also be a symmetry operation.

IMPROPER ROTATIONS : ROTATION-REFLECTION AXES

Operation: clockwise rotation (viewed along -z direction) followed by reflection in a plane perpendicular to that axis.

Element: rotation-reflection axis (sometimes known as "alternating axis of symmetry")

As for inversion - components need not be themselves symmetry operations for the molecule.

e.g. a regular tetrahedral molecule, such as CH₄

where rotation is through (360/n)^o

S₄ axis requires presence of coincident C₂ axis

If \textbf{C}_n and σ_h are both present individually - there must also be an \textbf{S}_n axis :

e.g. BF₃ - trigonal planar

 σ_h in plane of molecule. $C_3^1 + \sigma_h$ individually, therefore S_3^1 must also be a symmetry operation

Other S_n examples: IF₇, pentagonal bipyramid, has C_5 and σ_h , therefore S_5 also.

Ethane in staggered conformation

i.e. rotate by 60° and reflect in perp. plane. Note NO C₆, σ_h separately.

POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY

If one is found - go to STEP 2

If not: look for

(a) plane of symmetry - if one is found, molecule belongs to point group C_s

POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY

If one is found - go to STEP 2

If not: look for

(a) plane of symmetry - if one is found, molecule belongs to point group C_s

No axis, but plane containing S, O, bisecting CISCI angle, is a symmetry plane. Hence C_s point group.

If no plane is found, look for

(b) centre of symmetry - if one is found, molecule belongs to point group C_i .

e.g. CHCIBrCHCIBr (staggered conformation):

No axis, no planes, but mid-point of C-C bond is centre of symmetry. Therefore C_i point group.

STEP 2 : LOOK FOR C_2 AXES PERPENDICULAR TO C_n

If found, go to STEP 3. If not, look for

- (a) a HORIZONTAL PLANE OF SYMMETRY, if found point group is C_{nh}
- (C_n = highest order axis)

Highest order axis is C_2 (perp. to plane, through mid-pt. of N=N bond). No C_2 axes perp. to this, but molecular plane is plane of symmetry (perp. to C_2 , i.e. σ_h). Point group C_{2h} .

If there is no horizontal plane, look for

(b) n VERTICAL PLANES OF SYMMETRY. If found, molecule belongs to point group C_{nv}

Many examples, e.g. H₂O

 C_2 axis as shown. No other C_2 's, no σ_h , but two sv's, one in plane, one perp. to plane, bisecting HOH angle. Point group C_{2v}

C₃ highest order axis

No C_2 's perp. to C_3

No σ_h , but

 $3 \sigma_v$'s, each contains P, one Cl

Therefore C_{3v}

By VSEPR, square pyramidal

F^{mm}F FC₄ Highest order axis : C_4 No C_2 's perp. to C_4 No σ_h , but 4 vertical planes. Therefore C_{4v} N.B. of 4 vertical planes, two are σ_v 's, two σ_d 's

(d) an S_{2n} axis coincident with C_n : point group S_{2n}

STEP 3 If there are nC_2 's perp. to C_n , look for:

(a) horizontal plane of symmetry. If present, point group is

Square planar by VSEPR

Main axis C₄

4 C₂'s perp. to C₄ (2 along XeF bonds (C_2') , 2 bisecting, $(C_2")$)

 σ_{h} - plane of molecule

Point group D_{4h}

If no σ_h , look for:

(b) n vertical planes of symmetry (σ_v/σ_d) .

If these are present, molecule belongs to point group D_{nd}

e.g. allene, H₂C=C=CH₂.

Main axis C₂ - along C=C=C

Two C_2 's as shown

Two vertical planes (σ_d) - each containing one CH₂ unit

Point group D_{2d}

A few molecules do not appear to fit into this general scheme.....

LINEAR MOLECULES

Do in fact fit into scheme - but they have an infinite number of symmetry operations.

Molecular axis is C_{∞} - rotation by any arbitrary angle $(360/\infty)^{\circ}$, so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry.

Divide linear molecules into two groups:

(i) No centre of symmetry, e.g.: $H \longrightarrow C \longrightarrow N$ C_{∞}

No C₂'s perp. to main axis, but $\infty \sigma_v$'s containing main axis: point group $C_{\infty v}$

Point group $D_{\infty h}$

Highly symmetrical molecules

A few geometries have several, equivalent, highest order axes. Two geometries most important:

Regular tetrahedron

 $3C_4$'s (along F-S-F axes) also $4C_3$'s. $6C_2$'s, several planes, S_4 , S_6 axes, and a centre of symmetry (at S atom) Point group O_h

These molecules can be identified without going through the usual steps.

Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group.