MOLECULAR SYMMETRY

Know intuitively what "symmetry" means - how to make it quantitative?

Will stick to isolated, finite molecules (not crystals).
SYMMETRY OPERATION

Carry out some operation on a molecule (or other object) - e.g. rotation. If final configuration is INDISTINGUISHABLE from the initial one - then the operation is a SYMMETRY OPERATION for that object. The line, point, or plane about which the operation occurs is a SYMMETRY ELEMENT
N.B. "Indistinguishable" does not necessarily mean
"identical".
e.g. for a square piece of card, rotate by $90{ }^{\circ}$ as shown below:

i.e. the operation of rotating by 90° is a symmetry operation for this object

Labels show final configuration is NOT identical to original.

Further 90 o rotations give other indistinguishable configurations - until after 4 (360ㅇ) the result is identical.

Motions of molecule (rotations, reflections, inversions etc.

- see below) which convert molecule into configuration
indistinguishable from original.

Each element is a LINE, PLANE or POINT about which the symmetry operation is performed. Example above operation was rotation, element was a ROTATION AXIS. Other examples later.

Symmetry element Symmetry operation(s)

- E (identity)
C_{n} (rotation axis) $\quad \mathrm{C}_{\mathrm{n}}{ }^{1} \ldots . . \mathrm{C}_{\mathrm{n}}{ }^{\mathrm{n}-1}$ (rotation about axis)
σ (reflection plane) σ (reflection in plane)
i (centre of symm.) i (inversion at centre)
S_{n} (rot./reflection axis) $S_{n}{ }^{1} \ldots S_{n}{ }^{n-1}$ (n even) (rot./reflection about axis)

$$
S_{n}^{1} \ldots S_{n}^{2 n-1}(n \text { odd })
$$

Notes
(i) symmetry operations more fundamental, but elements often easier to spot.
(ii) some symmetry elements give rise to more than one operation - especially rotation - as above.

ROTATIONS - AXES OF SYMMETRY

Some examples for different types of molecule: e.g.

Line in molecular plane, bisecting HOH angle is a rotation axis, giving indistinguishable configuration on rotation by 180°.

By VSEPR - trigonal, planar, all bonds equal, all angles 120°. Take as axis a line
perpendicular to molecular plane, passing through B atom.

axis perpendicular
to plane
N.B. all rotations CLOCKWISE when viewed along -z direction.

Symbol for axes of symmetry

where rotation about axis gives indistinguishable configuration every $(360 / n)^{0}$ (i.e. an n-fold axis)

Thus $\mathrm{H}_{2} \mathrm{O}$ has a C_{2} (two-fold) axis, BF_{3} a C_{3} (three-fold) axis. One axis can give rise to >1 rotation, e.g. for BF_{3}, what if we rotate by 240° ?

Must differentiate between two operations.
Rotation by 120° described as $\mathrm{C}_{3}{ }^{1}$,
rotation by 240° as $\mathrm{C}_{3}{ }^{2}$.

In general C_{n} axis (minimum angle of rotation (360/n) ${ }^{0}$) gives operations $C_{n}{ }^{m}$, where both m and n are integers.

When $m=n$ we have a special case, which introduces a new type of symmetry operation.....

IDENTITY OPERATION

For $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2}{ }^{2}$ and for $\mathrm{BF}_{3} \mathrm{C}_{3}{ }^{3}$ both bring the molecule to an IDENTICAL arrangement to initial one.

Rotation by 360° is exactly equivalent to rotation by 0°, i.e. the operation of doing NOTHING to the molecule.

xenon tetrafluoride, XeF_{4}

cyclopentadienide ion, $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$

benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Examples also known of C_{7} and C_{8} axes.

If $\mathbf{a} \mathrm{C}_{2 \mathrm{n}}$ axis (i.e. even order) present, then C_{n} must also be present:

Therefore there must be a C_{2} axis coincident with C_{4}, and the operations generated by C_{4} can be written:

$$
C_{4}^{1}, C_{4}^{2}\left(C_{2}^{1}\right), C_{4}^{3}, C_{4}^{4}(E)
$$

Similarly, a C_{6} axis is accompanied by C_{3} and C_{2}, and the operations generated by C_{6} are:

$$
\mathrm{C}_{6}{ }^{1}, \mathrm{C}_{6}{ }^{2}\left(\mathrm{C}_{3}{ }^{1}\right), \mathrm{C}_{6}{ }^{3}\left(\mathrm{C}_{2}{ }^{1}\right), \mathrm{C}_{6}{ }^{4}\left(\mathrm{C}_{3}{ }^{2}\right), \mathrm{C}_{6}{ }^{5}, \mathrm{C}_{6}{ }^{6}(\mathrm{E})
$$

Molecules can possess several distinct axes, e.g. $B F_{3}$:

Three C_{2} axes, one along each $B-F$ bond, perpendicular to C_{3}

Several different types of symmetry plane different orientations with respect to symmetry axes.

By convention - highest order rotation axis drawn VERTICAL. Therefore any plane containing this axis is a VERTICAL PLANE, σ_{v}.
e.g. $\mathrm{H}_{2} \mathrm{O}$ plane above (often also called $\sigma(x z)$)

Can be >1 vertical plane, e.g. for $\mathrm{H}_{2} \mathrm{O}$ there is also:

This is also a vertical plane, but symmetrically different from other, could be labelled $\sigma_{v}{ }^{\prime}$.

Any symmetry plane PERPENDICULAR to main axis is a HORIZONTAL PLANE, σ_{h}. e.g. for XeF_{4} :

Plane of molecule (perp. to C_{4}) is a symmetry plane, i.e. σ_{h})

Some molecules possess additional planes, as well as σ_{v} and σ_{h}, which need a separate label. e.g. XeF4

Four "vertical"
planes - but two
different from
others.Those along
bonds called σ_{v}, but
those bisecting
bonds σ_{d} - i.e.
DIHEDRAL PLANES
Usually, but not always, σ_{v} and σ_{d} differentiated in same way.

Two final points about planes of symmetry:
(i) if no C_{n} axis, plane just called σ;
(ii) unlike rotations, only ONE operation per plane. A second reflection returns you to originall state, i.e. $(\sigma)(\sigma)=\sigma^{2}=E$

INVERSION :
 CENTRES OF SYMMETRY

Involves BOTH rotation AND reflection. OPERATION : INVERSION
ELEMENT : a POINT - CENTRE OF SYMMETRY or INVERSION CENTRE.

Best described in terms of cartesian axes:

The origin, $(0,0,0)$ is the centre of inversion. If the coordinates of every point are changed from (x, y, z) to ($-x,-y,-z$), and the resulting arrangement is indistinguishable from original - the INVERSION is a symmetry operation, and the molecule possesses a CENTRE OF SYMMETRY (INVERSION) (i.e. CENTROSYMMETRIC)
e.g. trans- $\mathrm{N}_{2} \mathrm{~F}_{2}$

In practice, inversion involves taking every atom to the centre - and out the same distance in the same direction on the other side.

Symbol - same for operation (inversion) and element (centre): \square
Another example: XeF_{4}

As for reflections, the presence of a centre of symmetry only generates one new operation, since carrying out inversion twice returns everything back to start.

$$
(x, y, z) \xrightarrow{i}(-x,-y,-z) \xrightarrow{i}(x, y, z) \quad \text { i.e. }(i)(i)=i^{2}=E
$$

Inversion is a COMPOSITE operation, with both rotation and reflection components. Consider a rotation by 180° about the z axis:

$$
(x, y, z) \quad \longrightarrow \quad(-x,-y, z)
$$

Follow this by reflection in the xy plane

$$
(-x,-y, z) \longrightarrow(-x,-y,-z)
$$

BUT individual components need not be symmetry

 operations themselves.
e.g. staggered conformation of $\mathrm{CHClBr}-\mathrm{CHClBr}$

> Inversion at centre gives indistinguishable configuration.

> The components, of rotation by 180° or reflection in a plane perpendicular to the axis, do not.

If, however, a molecule does possess a C_{2} axis and a σ_{h} (perpendicular) plane as symmetry operations, then inversion (i) must also be a symmetry operation.

IMPROPER ROTATIONS : ROTATION-REFLECTION AXES

Operation: clockwise rotation (viewed along -z direction) followed by reflection in a plane perpendicular to that axis.

Element: rotation-reflection axis (sometimes known as
"alternating axis of symmetry")
As for inversion - components need not be themselves symmetry operations for the molecule.
e.g. a regular tetrahedral molecule, such as CH_{4}

where rotation is through (360/n) ${ }^{0}$

S_{4} axis requires presence of coincident C_{2} axis

If C_{n} and σ_{h} are both present individually - there must also be an S_{n} axis :
e.g. BF_{3} - trigonal planar

σ_{h} in plane of molecule.
$C_{3}{ }^{1}+\sigma_{h}$ individually, therefore $\mathrm{S}_{3}{ }^{1}$ must also be a
symmetry operation
Other S_{n} examples: I_{7}, pentagonal bipyramid, has C_{5} and σ_{h}, therefore S_{5} also.

Ethane in staggered conformation

i.e. rotate by 60° and reflect in perp. plane.

Note NO $\mathrm{C}_{6}, \sigma_{\mathrm{h}}$
separately.

POINT GROUPS

A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY
 If one is found - go to STEP 2

If not: look for
(a) plane of symmetry - if one is found, molecule belongs to point group C_{s}

POINT GROUPS

A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY
 If one is found - go to STEP 2

If not: look for
(a) plane of symmetry - if one is found, molecule belongs to point group C_{s}
e.g. SOCl_{2}

No axis, but plane containing S , O , bisecting CISCI angle, is a symmetry plane. Hence C_{s} point group.

If no plane is found, look for
(b) centre of symmetry - if one is found, molecule belongs to point group C_{i}.
e.g. CHClBrCHClBr (staggered conformation):

No axis, no planes, but mid-point of C-C bond is centre of symmetry.
Therefore C_{i} point group.

No axes, plane or centre, therefore
(so called because $E=C_{1}$,
(c) no symmetry except E : point group C_{1} rotation through 360°)
e.g. CHFCIBr

No symmetry except
E , therefore point group C_{1}.

STEP 2 : LOOK FOR C 2 AXES PERPENDICULAR TO Cn

If found, go to STEP 3. If not, look for
(a) a HORIZONTAL PLANE OF SYMMETRY, if found - point group is C_{nh}
($C_{n}=$ highest order axis)
e.g. trans $-\mathrm{N}_{2} \mathrm{~F}_{2}$:

Highest order axis is \mathbf{C}_{2}
(perp. to plane, through
mid-pt. of $\mathrm{N}=\mathrm{N}$ bond).
No C_{2} axes perp. to this, but molecular plane is plane of symmetry (perp. to C_{2}, i.e.
σ_{h}). Point group $\mathrm{C}_{2 h}$.
If there is no horizontal plane, look for
(b) n VERTICAL PLANES OF SYMMETRY. If found, molecule belongs to point group C_{nv}

Many examples, e.g. $\mathrm{H}_{2} \mathrm{O}$

N.B. of 4 vertical planes, two are σ_{v} 's, two σ_{d} 's

(looking down C_{4} axis)

If no planes at all, could have
(c) no other symmetry elements: point group C_{n}, or
(d) an $\mathrm{S}_{2 \mathrm{n}}$ axis coincident with C_{n} : point group $\mathrm{S}_{2 \mathrm{n}}$

STEP 3 If there are nC_{2} 's perp. to C_{n}, look for:
(a) horizontal plane of symmetry. If present, point group is
$D_{n h}$
e.g. ethene (ethylene), $\mathrm{C}_{2} \mathrm{H}_{4}$

Two additional C_{2} 's as shown.
σ_{h} in plane defined by the last two C_{2} 's
BF_{3} Planar trigonal molecule by VSEPR

$\mathrm{XeF}_{4} \quad$ Square planar by VSEPR

If no σ_{h}, look for:
(b) n vertical planes of symmetry $\left(\sigma_{\mathrm{v}} / \sigma_{\mathrm{d}}\right)$.

If these are present, molecule belongs to point group $\mathrm{D}_{\text {nd }}$
e.g. allene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$.

Main axis C_{2} - along $\mathrm{C}=\mathrm{C}=\mathrm{C}$

Two \mathbf{C}_{2} 's as shown
Two vertical planes $\left(\sigma_{d}\right)$ - each containing one CH_{2} unit

$$
\text { Point group } \quad D_{2 d}
$$

A few molecules do not appear to fit into this general scheme.

LINEAR MOLECULES

Do in fact fit into scheme - but they have an infinite
number of symmetry operations.
Molecular axis is C_{∞} - rotation by any arbitrary angle $(360 / \infty)^{0}$, so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry.

Divide linear molecules into two groups:
(i) No centre of symmetry, e.g.:

No C_{2} 's perp. to main axis, but $\infty \sigma_{v}$'s containing main axis: point group $\mathrm{C}_{\infty \mathrm{V}}$
(ii) Centre of symmetry, e.g.:

Highly symmetrical molecules

A few geometries have several, equivalent, highest order axes. Two geometries most important:

Regular octahedron
e.g.

$$
3 C_{4} \text { 's (along F-S-F axes) }
$$ also $4 \mathrm{C}_{3}$'s. $6 \mathrm{C}_{2}$'s, several planes, $\mathrm{S}_{4}, \mathrm{~S}_{6}$ axes, and a centre of symmetry (at S atom) Point group O_{h}

These molecules can be identified without going through the usual steps.

Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group.

