Point Group Assignments and Character Tables

A Simpler Approach

Point group	Symmetry elements	Shape	Examples
C_{1}	E		SiHClBrF
C_{2}	$E_{1} C_{2}$		$\mathrm{H}_{2} \mathrm{O}_{2}$
C_{5}	E, σ		NHF_{2}
$C_{2 v}$	$E, C_{2^{\prime}} \sigma_{v^{\prime}} \sigma_{v}{ }^{\prime}$		$\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$
$C_{3 v}$	$E, 2 C_{3^{\prime}} 3 \sigma_{v}$		$\mathrm{NH}_{3}, \mathrm{PCl}_{3}, \mathrm{POCl}_{3}$
$C_{\text {ov }}$	$E, C_{2}, 2 C_{\varphi^{\prime}} \infty \sigma_{v}$		OCS, $\mathrm{CO}, \mathrm{HCl}$
$D_{2 \mathrm{~h}}$	$E_{1} 3 C_{2}, i, 3 \sigma$		$\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~B}_{2} \mathrm{H}_{6}$
$D_{3 \mathrm{~h}}$	$E, 2 C_{3^{\prime}}, 3 C_{2^{\prime}}, \sigma_{\mathrm{h}^{\prime}}, 2 S_{3^{\prime}}, 3 \sigma_{v}$		$\mathrm{BF}_{3^{\prime}} \mathrm{PCl}_{5}$
$D_{4 \mathrm{~h}}$	$E_{1} 2 C_{4^{\prime}} C_{2^{\prime}}, 2 C_{2}^{\prime}, 2 C_{2}^{\prime \prime}, i, 2 S_{4^{\prime}} \sigma_{\mathrm{h}^{\prime}} 2 \sigma_{\mathrm{v}^{\prime}} 2 \sigma_{\mathrm{d}}$		XeF_{4}, trans-[MA $\left.\mathrm{B}_{2}\right]$
$D_{\text {ch }}$	$E_{1} \infty C_{2}{ }^{\prime}, 2 C_{\varphi^{\prime}},{ }^{\prime} \infty \sigma_{v}{ }^{\prime} 2 S_{\varphi}$		$\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
$T_{\text {d }}$	$E_{1} 8 C_{3^{\prime}}, 3 C_{2^{\prime}}, 6 S_{4}, 6 \sigma_{\text {d }}$		$\mathrm{CH}_{4} \mathrm{SiCl}_{4}$
$O_{\text {h }}$	$E_{1} 8 C_{3^{\prime}}, 6 C_{2^{\prime}}, 6 C_{4}, 3 C_{2^{\prime}}, i, 6 S_{4^{\prime}} 8 S_{6^{\prime}} 3 \sigma_{\mathrm{h}^{\prime}} 6 \sigma_{\mathrm{d}}$		SF ${ }_{6}$

LINEAR MOLECULES

Do in fact fit into scheme - but they have an infinite
number of symmetry operations.
Molecular axis is C_{∞} - rotation by any arbitrary angle $(360 / \infty)^{0}$, so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry.

Divide linear molecules into two groups:
(i) No centre of symmetry, e.g.:

No C_{2} 's perp. to main axis, but $\infty \sigma_{v}$'s containing main axis: point group $\mathrm{C}_{\infty \mathrm{V}}$
(ii) Centre of symmetry, e.g.:

Highly symmetrical molecules

A few geometries have several, equivalent, highest order axes. Two geometries most important:

POINT GROUPS

A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY
 If one is found - go to STEP 2

If not: look for
(a) plane of symmetry - if one is found, molecule belongs to point group C_{s}

Regular octahedron
e.g.

$$
3 C_{4} \text { 's (along F-S-F axes) }
$$ also $4 \mathrm{C}_{3}$'s. $6 \mathrm{C}_{2}$'s, several planes, $\mathrm{S}_{4}, \mathrm{~S}_{6}$ axes, and a centre of symmetry (at S atom) Point group O_{h}

These molecules can be identified without going through the usual steps.

Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group.

So, What IS a group?

And, What is a Character???

A GROUP is a collection of entities or elements which satisfy the following four conditions:

1) The product of any two elements (including the square of each element) must be an element of the group. For symmetry operations, the multiplication rule is to successively perform operations.
2) One element in the group must commute with all others and leave them unchanged. Therefore the "E",

$$
E X=X E=X
$$

3) The associative law of multiplication must hold

$$
A(B C)=(A B) C
$$

4) Every element must have a reciprocal which is also an element of the group. i.e.,

$$
X\left(X^{-1}\right)=\left(X^{-1}\right) X=E
$$

Note: An element may be its own reciprocal.

```
Groups may be composed of anything: symmetry operations,
nuclear particles, etc. Simplest is +1, -1.
```

All the groups which follow the same multiplication table are called representations of the same group.
\rightarrow Character Tables

Table 6.4 The $C_{2 v}$ character table

Table 6.3 The components of a character table

Name of point group*	Symmetry operations R arranged by class ($E, C_{n^{\prime}}$ etc.)	Functions	Further functions	Order of group, h
Symmetry species (Γ)	Characters (χ)	Translations and components of dipole moments (x, y, z), of relevance to IR activity; rotations	Quadratic functions such as $z^{2}, x y$, etc., of relevance to Raman activity	

4. The $C_{n v}$ Groups

$C_{2 v}$	E	C_{2}	$\sigma_{1}(x z)$	$\sigma_{0}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	
A_{2}	1	1	-1	-1	R_{x}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

$C_{3 u}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	
A_{2}	1	1	-1	R_{x}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	
$x^{2}+y^{2}, z^{2}$					
$\left(x^{2}-y^{2}, x y\right)(x z, y z)$					

C_{4}	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{d}$			
A_{1}	1	1	1	1	1			
A_{2}	1	1	1	-1	-1	z	R_{x}	
B_{1}	1	-1	1	1	-1			
B_{2}	1	-1	1	-1	1			
E	2	0	-2	0	0			

Cso	E	$2 C_{s}$	$2 C_{5}{ }^{2}$	$5 \sigma_{0}$		
A_{1}	1	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	$\boldsymbol{R}_{\boldsymbol{x}}$	
E_{1}	2	$2 \cos 72^{\circ}$	$2 \cos 144^{\circ}$	0	$(x, y)\left(R_{x}, R_{y}\right)$	($x z, y z$)
E_{2}	2	$2 \cos 144^{\circ}$	$2 \cos 72^{\circ}$	0		$\left(x^{2}-y^{2}, x y\right)$

E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$				
A_{1}	1	1	1	1	1	1			
A_{2}	1	1	1	1	-1	-1			
B_{1}	1	-1	1	-1	1	-1			
B_{2}	1	-1	1	-1	-1	1			
E_{2}	2	1	-1	-2	0	0			
E_{2}	2	-1	-1	2	0	0	$	$	
:---									

4. The $C_{n v}$ Groups

$C_{2 v}$	E	C_{2}	$\sigma_{1}(x z)$	$\sigma_{0}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	
A_{2}	1	1	-1	-1	R_{x}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

$C_{3 u}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	
A_{2}	1	1	-1	R_{x}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	
$x^{2}+y^{2}, z^{2}$					
$\left(x^{2}-y^{2}, x y\right)(x z, y z)$					

C_{4}	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{d}$			
A_{1}	1	1	1	1	1			
A_{2}	1	1	1	-1	-1	z	R_{x}	
B_{1}	1	-1	1	1	-1			
B_{2}	1	-1	1	-1	1			
E	2	0	-2	0	0			

Cso	E	$2 C_{s}$	$2 C_{5}{ }^{2}$	$5 \sigma_{0}$		
A_{1}	1	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	$\boldsymbol{R}_{\boldsymbol{x}}$	
E_{1}	2	$2 \cos 72^{\circ}$	$2 \cos 144^{\circ}$	0	$(x, y)\left(R_{x}, R_{y}\right)$	($x z, y z$)
E_{2}	2	$2 \cos 144^{\circ}$	$2 \cos 72^{\circ}$	0		$\left(x^{2}-y^{2}, x y\right)$

E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$				
A_{1}	1	1	1	1	1	1			
A_{2}	1	1	1	1	-1	-1			
B_{1}	1	-1	1	-1	1	-1			
B_{2}	1	-1	1	-1	-1	1			
E_{2}	2	1	-1	-2	0	0			
E_{2}	2	-1	-1	2	0	0	$	$	
:---									

6．The $D_{n h}$ Groups

$\mathrm{D}_{2 \mathrm{k}}$	E	$C_{2}(z)$	$C_{2}(y)$	$C_{2}(x)$	i	$\sigma(x y)$	$\sigma(x z)$	$o(y z)$		
${ }^{\text {A }}$	1	1	－1	1	1	1	－	1		x^{2}, y^{2}, z^{2}
B_{20}	1	－1		－1	1	－1	1	1	R_{x} R_{y}	
${ }_{4}{ }^{30}$	I	－1	－1	1	-1	二 1	－1	－${ }_{1}^{1}$	R_{x}	$y z$
	${ }_{1}^{1}$	－${ }_{-1}^{1}$	－1	－1	二 1	二1	－1	－1	z	
${ }_{\text {Bru4 }}$	1	-1	－1	－1	二1		－1	－1	$\underset{x}{ }$	

Das	$2 C$.	C_{2}	$2 C_{2}$	$2 \mathrm{C}_{2}{ }^{\text {－}}$	i	$2 S_{4}$	σ_{n}	$2 \sigma_{0}$	$2 \sigma^{2}$		
A_{10}	1	1			1	1	1				$x^{2}+y^{2}, z^{2}$
Al_{10}	－1			二1	1	－1			二1	R_{z}	$x^{2}-y^{2}$
	${ }_{2}^{1}-1$	$-{ }^{\mathbf{1}}$	－${ }_{0}^{1}$	${ }_{0}^{1}$	2	－1	$-\frac{1}{2}$	－1	${ }_{0}^{1}$	（ R_{x}, R_{y} ）	
	1	1	－1	－1	－1	－1	二 1	-1	-1		
${ }_{\text {B1u }}$	－1	1		－1	－ 1	－1	二1	－1		z	
${ }_{\text {E＊}}$	$\frac{1}{2}-1$	$-\frac{1}{2}$		$\stackrel{1}{0}$	二 2	1		${ }_{0}^{1}$		(x, y)	

The $D_{n n}$ Groups

$D_{\text {zin }}$	E	CI(x)	$C \cdot(y)$	$C_{1}(x)$	1	$\sigma(x y)$	$0(x y)$	O(yz)		
4	1	1	1	1	1	I	1	1		$x^{2} \cdot y^{2} x^{3}$
Bi_{1}	I	I	-1	- I	1	I	-1	- 1	\boldsymbol{R}_{1}	$x y$
B_{39}	1	-1	1	- 1	1	- I	1	-1	\boldsymbol{R}_{y}	$x 2$
Al_{3}	I	-1	-1	1	1	-1	- 1	1	R_{r}	$y=$
A10	1	1	1	1	-1	-1	-1	- I		
Br_{10}	1	1	- 1	-1	-1	-1	1	1	\bar{z}	
Br_{2}	1	-1	I	- 1	-1	1	- 1	1	y	
B_{3}	1	-1	- I	1	-1	1	1	- I	x	

D.t	E	$2 C_{4}$	CI	$2 C^{\prime \prime}$	$2 c^{-}$	i	25_{4}	$\sigma_{\text {m }}$	$2 \sigma_{0}$	2π		
A1.	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2} \cdot y^{2}$
A]	1	1	1	-1	- I	1	1	1	- 1	-1	$\boldsymbol{R}_{\text {E }}$	
B_{i}	1	-1	1	1	-1	1	- I	1	1	-1		$x^{2}-y^{2}$
H_{2}	$\frac{1}{2}$	-1	- 1	-1	$\frac{1}{0}$	1	-1	1	-1	1		
${ }^{4}$	2	0	-2	0	0	2 -1		-2 -1	$\begin{array}{r} 0 \\ -1 \end{array}$	0 -1	$\left(R_{\text {m }}, R_{p}\right)$	(xx, yz)
Aim	1	1	1	-1	1 -1	-1	-1	-1 -1	-1	$-\frac{1}{1}$	3	
Bim_{14}	1	- 1	1	1	-1	-1	1	- 1	-1	1	2	
Bram_{2}	1	-1	1	-1		-1		$=1$	1	- 1		
E.	2	0	-2	0	0	-2	0	2	9	0	(x_{4}, y)	

9. The Cubic Groups (Continued).

Table 6.4 The $C_{2 v}$ character table

$$
\begin{array}{ccccccc}
C_{2 v} & E & C_{2} & \sigma_{v} & \sigma_{v}{ }^{\prime} & h=4 & \ldots \ldots \ldots \ldots \\
\hdashline \mathrm{~A}_{1} & 1 & 1 & 1 & 1 & z & x^{2}, y^{2}, \mathrm{z}^{2} \\
\mathrm{~A}_{2} & 1 & 1 & -1 & -1 & R_{z} & \\
\mathrm{~B}_{1} & 1 & -1 & 1 & -1 & x, R_{y} & x y \\
\mathrm{~B}_{2} & 1 & -1 & -1 & 1 & y_{1} R_{x} & z x, y z
\end{array}
$$

Table 6.5 The $C_{3 v}$ character table

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$	$h=6$	
$\ldots \mathrm{~A}_{1}$	1	1	1	z	$\ldots \ldots \ldots$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	z^{2}
E	2	-1	0	$(x, y)\left(R_{x^{\prime}} R_{y}\right)$	$(z x, y z)\left(x^{2}-y^{2}, x y\right)$

consequences ofsynnetry

- Only the molecules which belong to the $\mathbf{C n}, \mathbf{C n v}$, or $\mathbf{C s}$ group can have a permanent dipole moment.
- A molecule may be chiral only if it does not have an axis of improper rotation Sn.
- IR Allowed transitions may be predicted by symmetry operations
- Orbital overlap may be predicted and described by symmetry

Character table for $\mathrm{C}_{\infty v}$ point group

	\mathbf{E}	$\mathbf{2 C _ { \infty }}$	\ldots	∞ \&sigma ${ }_{v}$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{1}}=\boldsymbol{\Sigma}^{+}$	1	1	\ldots	1	z	$x^{2}+y^{2}, z^{2}$
$\mathbf{A}_{2}=\Sigma^{-}$	1	1	\ldots	-1	R_{z}	
$\mathbf{E}_{1}=\boldsymbol{\Pi}$	2	$2 \cos (\Phi)$	\ldots	0	$(x, y)\left(R_{x}\right.$, $\left.R_{y}\right)$	$(x z, y z)$
$E_{2}=\Delta$	2	$2 \cos (2 \phi)$	\ldots	0		$\left(x^{2}-y^{2}, x y\right)$
$E_{3}=\Phi$	2	$2 \cos (3 \phi)$	\ldots	0		
\ldots	\ldots	\ldots	\ldots	\ldots		

Character table for $D_{\infty h}$ point group

	E	2C ${ }_{\infty}$...	$\infty \sigma_{v}$	i	2S ${ }_{\infty}$...	$\infty \mathrm{C}_{2}{ }_{2}$	linear functions, rotations	quadratic
$\mathrm{A}_{1 \mathrm{~g}} \mathrm{E}^{+}{ }_{\mathrm{g}}$	1	1	\ldots	1	1	1	\ldots	1		$x^{2}+y^{2}, z^{2}$
$\mathrm{A}_{2 \mathrm{~g}} \sum^{-}{ }_{\mathrm{g}}$	1	1	...	-1	1	1	...	-1	R_{z}	
$\mathrm{E}_{1 \mathrm{~g}}=\mathrm{C}_{\mathrm{g}}$	2	$2 \cos (\phi)$...	0	2	$-2 \cos (\phi)$	\ldots	0	$\left(R_{x}, R_{y}\right)$	(xz, yz)
$E_{2 \mathrm{~g}}=\Delta_{\mathrm{g}}$	2	$2 \cos (2 \phi)$	\ldots	0	2	$2 \cos (2 \phi)$...	0		($\left.x^{2}-y^{2}, x y\right)$
$\mathrm{E}_{3 \mathrm{~g}}=\Phi_{\mathrm{g}}$	2	$2 \cos (3 \phi)$	\ldots	0	2	$-2 \cos (3 \phi)$	\ldots	0		
\ldots	\ldots	\ldots		
$A_{1 u} \Sigma^{+}{ }_{u}$	1	1	...	1	-1	-1	...	-1	z	
$\mathrm{A}_{\mathbf{2 u}}=\Sigma^{-}{ }_{u}$	1	1	...	-1	-1	-1	...	1		
$\mathrm{E}_{1 \mathrm{u}}=\Pi_{u}$	2	$2 \cos (\phi)$...	0	-2	$2 \cos (\phi)$...	0	(x, y)	
$\mathrm{E}_{2 \mathrm{u}}=\Delta_{u}$	2	$2 \cos (2 \phi)$...	0	-2	$-2 \cos (2 \phi)$...	0		
$\mathrm{E}_{3 \mathrm{u}}=\Phi_{\mathrm{u}}$	2	$2 \cos (3 \phi)$	\ldots	0	-2	$2 \cos (3 \phi)$...	0		
\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots		

