# Point Group Assignments and Character Tables



W. H. Eeman

## A Simpler Approach



#### Inorganic Chemistry Chapter 1: Table 6.2 Table 6.2 The composition of some common groups

#### W. H. Freeman



© 2009 W.H. Freeman

## LINEAR MOLECULES

Do in fact fit into scheme - but they have an infinite number of symmetry operations.

Molecular axis is  $C_{\infty}$  - rotation by any arbitrary angle  $(360/\infty)^{\circ}$ , so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry.

Divide linear molecules into two groups:

(i) No centre of symmetry, e.g.:  $H \longrightarrow C \longrightarrow N$  ......  $C_{\infty}$ 

No C<sub>2</sub>'s perp. to main axis, but  $\infty \sigma_v$ 's containing main axis: point group  $C_{\infty v}$ 





Point group  $D_{\infty h}$ 

**Highly symmetrical molecules** 

A few geometries have several, equivalent, highest order axes. Two geometries most important:

# **POINT GROUPS**

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that molecule

**ASSIGNMENT OF MOLECULES TO POINT GROUPS** 

**STEP 1 : LOOK FOR AN AXIS OF SYMMETRY** 

If one is found - go to STEP 2

If not: look for

(a) plane of symmetry - if one is found, molecule belongs to point group  $C_s$ 

#### **Regular tetrahedron**





 $3C_4$ 's (along F-S-F axes) also  $4C_3$ 's.  $6C_2$ 's, several planes,  $S_4$ ,  $S_6$  axes, and a centre of symmetry (at S atom) Point group  $O_h$ 

These molecules can be identified without going through the usual steps.

Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group.



So, What IS a group?





And, What is a Character???



A GROUP is a collection of entities or elements which satisfy the following four conditions:

1) The product of any two elements (including the square of each element) must be an element of the group. For symmetry operations, the multiplication rule is to successively perform operations.

2) One element in the group must commute with all others and leave them unchanged. Therefore the "E",

$$EX = XE = X$$

3) The associative law of multiplication must hold

$$A(BC) = (AB)C$$

4) Every element must have a reciprocal which is also an element of the group. i.e.,

$$X(X^{-1}) = (X^{-1}) X = E$$

Note: An element may be its own reciprocal.

Groups may be composed of anything: symmetry operations, nuclear particles, etc. Simplest is +1, -1.



W. Н.

#### Table 6.3 The components of a character table

| Name of<br>point<br>group* | Symmetry<br>operations <i>R</i><br>arranged by<br>class ( <i>E</i> , <i>C<sub>n</sub></i> , etc.) | Functions                                                                                                                            | Further<br>functions                                                                                          | Order of<br>group, <i>h</i> |
|----------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------|
| Symmetry<br>species (Γ)    | Characters ( $\chi$ )                                                                             | Translations and<br>components of<br>dipole moments ( <i>x</i> , <i>y</i> , <i>z</i> ),<br>of relevance to IR<br>activity; rotations | Quadratic functions<br>such as <i>z</i> <sup>2</sup> , <i>xy</i> , etc.,<br>of relevance to Raman<br>activity |                             |
|                            |                                                                                                   |                                                                                                                                      |                                                                                                               |                             |

\* Schoenflies symbol.

W. H.

4. The  $C_{nv}$  Groups

| Czu                                                            | E                     | $C_2 = \sigma_v($                                                                        | $(xz) \sigma'_v(yz)$                                                     | 1                                                                   |                                                                    |                                                                           |
|----------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| $ \frac{A_1}{A_2} $ $ \frac{B_1}{B_2} $                        | 1<br>1<br>1           |                                                                                          | $\begin{array}{c}1\\1\\-1\\-1\\1\\1\end{array}$                          | z<br>Rz<br>x, Ry<br>y, Rz                                           | x <sup>2</sup> , y <sup>2</sup> , z <sup>2</sup><br>xy<br>xz<br>yz |                                                                           |
| C 3 v                                                          | E                     | 2 <i>C</i> <sub>3</sub>                                                                  | $\sigma_v$                                                               |                                                                     |                                                                    |                                                                           |
| A 1<br>A 2<br>E                                                | 1<br>1<br>2           | 1<br>1<br>                                                                               | $ \begin{array}{c c} 1 & z \\ -1 & R_z \\ 0 & (x, y)(z) \end{array} $    | $(R_x, R_y)$                                                        | $x^2 + y^2, z$<br>$(x^2 - y^2, z)$                                 | 2<br>xy)(xz, yz)                                                          |
| $C_{4v}$                                                       | E                     | 2 <i>C</i> 4 <i>C</i> 2                                                                  | 20° 20°                                                                  |                                                                     | 1                                                                  |                                                                           |
| $ \begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \\ E \end{array} $ | 1<br>1<br>1<br>1<br>2 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                    | $z R_z$ $(x, y)(R_z)$                                               | $\begin{array}{c} x^2 \\ x^2 \\ xy \\ xy \\ (xz \end{array}$       | $+ y^2, z^2$<br>$- y^2$                                                   |
| Cs.                                                            | E                     | 2 <i>C</i> ₅                                                                             | 2 <i>C</i> ₅²                                                            | 50,                                                                 |                                                                    | 1                                                                         |
| $ \begin{array}{c} A_1 \\ A_2 \\ E_1 \\ E_2 \end{array} $      | 1<br>1<br>2<br>2      | 1<br>1<br>2 cos 72°<br>2 cos 144°                                                        | 1<br>1<br>2 cos 144°<br>2 cos 72°                                        |                                                                     | z<br>R <sub>x</sub><br>(x, y)(R <sub>x</sub> , R                   | $x^{2} + y^{2}, z^{2}$ (xz, yz)<br>(x <sup>2</sup> - y <sup>2</sup> , xy) |
| C60                                                            | E                     | 2C <sub>6</sub> 2C <sub>3</sub>                                                          | $C_2  3\sigma_v$                                                         | 3σ <sub>4</sub>                                                     |                                                                    |                                                                           |
| $ \begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \end{array} $      | 1<br>1<br>1           | 1 . 1<br>1 . 1<br>                                                                       | $ \begin{array}{cccc} 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \end{array} $ | $ \begin{array}{c c} 1 & z \\ -1 & R_z \\ -1 & 1 \\ 1 \end{array} $ |                                                                    | $x^2 + y^2, z^2$                                                          |
| $E_1$<br>$E_2$                                                 | 2<br>2                | $     \begin{array}{ccc}             1 & -1 \\             -1 & -1         \end{array} $ | $   \begin{array}{ccc}     -2 & 0 \\     2 & 0   \end{array} $           | 0 (x,<br>0                                                          | , y)(R <sub>x</sub> , R <sub>7</sub> )                             | (xz, yz)<br>$(x^2 - y^2, xy)$                                             |

4. The  $C_{nv}$  Groups

| Czu                                                            | E                     | $C_2 = \sigma_v($                                                                        | $(xz) \sigma'_v(yz)$                                                     | 1                                                                   |                                                                    |                                                                           |
|----------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| $ \frac{A_1}{A_2} $ $ \frac{B_1}{B_2} $                        | 1<br>1<br>1           |                                                                                          | $\begin{array}{c}1\\1\\-1\\-1\\1\\1\end{array}$                          | z<br>Rz<br>x, Ry<br>y, Rz                                           | x <sup>2</sup> , y <sup>2</sup> , z <sup>2</sup><br>xy<br>xz<br>yz |                                                                           |
| C 3 v                                                          | E                     | 2 <i>C</i> <sub>3</sub>                                                                  | $\sigma_v$                                                               |                                                                     |                                                                    |                                                                           |
| A 1<br>A 2<br>E                                                | 1<br>1<br>2           | 1<br>1<br>                                                                               | $ \begin{array}{c c} 1 & z \\ -1 & R_z \\ 0 & (x, y)(z) \end{array} $    | $(R_x, R_y)$                                                        | $x^2 + y^2, z$<br>$(x^2 - y^2, z)$                                 | 2<br>xy)(xz, yz)                                                          |
| $C_{4v}$                                                       | E                     | 2 <i>C</i> 4 <i>C</i> 2                                                                  | 20° 20°                                                                  |                                                                     | 1                                                                  |                                                                           |
| $ \begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \\ E \end{array} $ | 1<br>1<br>1<br>1<br>2 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                    | $z R_z$ $(x, y)(R_z)$                                               | $\begin{array}{c} x^2 \\ x^2 \\ xy \\ xy \\ (xz \end{array}$       | $+ y^2, z^2$<br>$- y^2$                                                   |
| Cs.                                                            | E                     | 2 <i>C</i> ₅                                                                             | 2 <i>C</i> ₅²                                                            | 50,                                                                 |                                                                    | 1                                                                         |
| $ \begin{array}{c} A_1 \\ A_2 \\ E_1 \\ E_2 \end{array} $      | 1<br>1<br>2<br>2      | 1<br>1<br>2 cos 72°<br>2 cos 144°                                                        | 1<br>1<br>2 cos 144°<br>2 cos 72°                                        |                                                                     | z<br>R <sub>x</sub><br>(x, y)(R <sub>x</sub> , R                   | $x^{2} + y^{2}, z^{2}$ (xz, yz)<br>(x <sup>2</sup> - y <sup>2</sup> , xy) |
| C60                                                            | E                     | 2C <sub>6</sub> 2C <sub>3</sub>                                                          | $C_2  3\sigma_v$                                                         | 3σ <sub>4</sub>                                                     |                                                                    |                                                                           |
| $ \begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \end{array} $      | 1<br>1<br>1           | 1 . 1<br>1 . 1<br>                                                                       | $ \begin{array}{cccc} 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \end{array} $ | $ \begin{array}{c c} 1 & z \\ -1 & R_z \\ -1 & 1 \\ 1 \end{array} $ |                                                                    | $x^2 + y^2, z^2$                                                          |
| $E_1$<br>$E_2$                                                 | 2<br>2                | $     \begin{array}{ccc}             1 & -1 \\             -1 & -1         \end{array} $ | $   \begin{array}{ccc}     -2 & 0 \\     2 & 0   \end{array} $           | 0 (x,<br>0                                                          | , y)(R <sub>x</sub> , R <sub>7</sub> )                             | (xz, yz)<br>$(x^2 - y^2, xy)$                                             |

6. The  $D_{nh}$  Groups

| D 2 k                                                                                                                                                | E                                    | $C_2(z)$                                                                                                  | C2(y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_2(x)$                                              | i                                                                             | σ(xy)                                              | $\sigma(xz)$                                          | σ(yz)                                                 |                                                                   |                                    |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------|
| Ae<br>Ble<br>B2e<br>B3e<br>Au<br>B1u<br>B2u<br>B3u                                                                                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1      |                                                                                                           | -1<br>-1<br>-1<br>-1<br>-1<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 1<br>1<br>1<br>-1<br>-1<br>-1                                                 |                                                    |                                                       |                                                       | R <sub>1</sub><br>R <sub>y</sub><br>R <sub>x</sub><br>z<br>y<br>x | x <sup>2</sup> ,<br>xy<br>xz<br>yz | y <sup>2</sup> , z <sup>2</sup>                                       |
| D3M                                                                                                                                                  | E                                    | $2C_{3}$                                                                                                  | 3C <sub>2</sub> σ <sub>h</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.53                                                  | 300                                                                           | 1                                                  |                                                       | -                                                     |                                                                   |                                    |                                                                       |
| A <sub>1</sub> ',<br>A <sub>2</sub> '<br>E'<br>A <sub>1</sub> "<br>A <sub>2</sub> "<br>E"                                                            | 1<br>1<br>2<br>1<br>1<br>2           |                                                                                                           | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 0 \\ -2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                               | R <sub>z</sub><br>(x, )<br>z<br>(R <sub>x</sub>    | v)<br>, R <sub>y</sub> )                              | $x^2 + y$ $(x^2 - z)$ $(xz, yz)$                      | <sup>2</sup> , z <sup>2</sup><br>v <sup>2</sup> , xy)             |                                    |                                                                       |
| DAN                                                                                                                                                  | E                                    | 2 <i>C</i> <sub>4</sub>                                                                                   | C <sub>2</sub> 2C <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ′ 2 <i>C</i> ₂″                                       | i                                                                             | 254                                                | σ <sub>R</sub> 2σ                                     | · 2σ.                                                 |                                                                   | I                                  |                                                                       |
| A 1.9<br>A 2.9<br>B 1.0<br>B 2.0<br>E 0<br>A 1.1<br>A 2.1<br>B 2.1<br>E 0<br>E 0<br>C | 1<br>1<br>1<br>2<br>1<br>1<br>1<br>2 | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | 1 - 1<br>1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -2 \\ -2 \\ \end{array} $ | i<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | R <sub>z</sub><br>(R <sub>x</sub> ,<br>z<br>(x, y                 | R <sub>y</sub> )                   | $     x^{2} + y^{2}, z^{2}      x^{2} - y^{2}      xy      (xz, yz) $ |

5. The D<sub>nh</sub> Groups

| D2h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                                         | $C_2(z)$                | C2())                                                                                      | $C_1(x)$                                             | 1                                         | $\sigma(xy)$    | $\sigma(xz)$                                                                   | o(yz)                                                 |                                                       |                                    |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------|--------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------|-------------------------------------------------------------|
| A.<br>B1.<br>B2.<br>B3.<br>A.<br>B1.<br>B1.<br>B2.<br>B3.<br>B3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                         |                                                                                            | 1<br>-1<br>-1<br>1<br>-1<br>-1<br>1<br>1             |                                           |                 | -1<br>-1<br>-1<br>-1<br>-1                                                     | -1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1                | R.<br>R,<br>R,<br>z<br>y<br>x                         | x <sup>2</sup> ,<br>xy<br>xz<br>yz | y <sup>2</sup> , z <sup>2</sup>                             |
| Dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                                         | 2C,                     | 3C <sub>2</sub> σ <sub>1</sub>                                                             | 2.53                                                 | $3\sigma_v$                               | 1               | 1                                                                              |                                                       |                                                       |                                    |                                                             |
| A 1 2<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>2<br>1<br>1<br>2                     | 1<br>1<br>1<br>1        |                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $-1 \\ -1 \\ -1 \\ 1 \\ 0$                | R:<br>(x, )<br> | v)<br>. R,)                                                                    | $x^2 + y$ $(x^2 - y)$ $(xz, yz)$                      | <sup>2</sup> , z <sup>2</sup><br>v <sup>2</sup> , xy) |                                    |                                                             |
| DAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                                         | 2 <i>C</i> <sub>4</sub> | C <sub>2</sub> 2C,                                                                         | 2C2*                                                 | 1                                         | 25. 0           | 7 <sub>8</sub> 2σ                                                              | . 201                                                 |                                                       |                                    |                                                             |
| A 1.<br>A 1.<br>B 2.<br>B 2.<br>A 2.<br>B 2.<br>B 2.<br>A 2.<br>B 2. | 1<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>2 |                         | $\begin{bmatrix} 1 & -1 \\ 1 & -2 \\ -2 & -1 \\ 1 & -1 \\ 1 & -2 \\ -2 & -2 \end{bmatrix}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1<br>1<br>2<br>-1<br>-1<br>-1<br>-1<br>-2 |                 | $\begin{array}{c} 1 \\ 1 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 2 \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | R.<br>(R<br>z<br>(x. y                                | R,)                                | $x^{2} + y^{2}, z^{2}$<br>$x^{2} - y^{2}$<br>xy<br>(xz, yz) |

9. The Cubic Groups (Continued).

| T.                                                                                                                             | E                | 4C3               | $4C_{3}^{2}$  | 3C,                | i                              | 4 <i>S</i> 6                                     | 4 <i>S</i> 6 <sup>5</sup> | 3on                     |                    |                    |                               | $\varepsilon = \exp(2i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | πi/3)                                        |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|---------------|--------------------|--------------------------------|--------------------------------------------------|---------------------------|-------------------------|--------------------|--------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| A <sub>g</sub>                                                                                                                 | 1                | 1                 | 1             | 1                  | ļ                              | 1                                                | 1                         | 1                       |                    |                    |                               | $x^2 + y^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>z<sup>2</sup></u> -                       |
| E,                                                                                                                             |                  | с<br>с*<br>с      | ε*<br>ε<br>ε* | 1                  | -1<br>1<br>1<br>-1             | -1<br>ε<br>ε*<br>-ε                              | -1<br>c*<br>c*            | -1<br>1)<br>1)          |                    |                    |                               | $\begin{array}{c} (2z^2 - x^2 - x^2$ | $-y^2$ ,                                     |
| Eu<br>To<br>Tu                                                                                                                 | 1<br>3<br>3      | ε*<br>0<br>0      | е<br>0<br>0   | <br> -<br>         | $-\frac{1}{3}$                 | e+<br>0<br>0                                     | $-\varepsilon$<br>0       | -1<br>-1                | ( <i>k</i>         | $R_x, R_y$         | , <i>R</i> <sub>z</sub> )     | (xz, yz, xy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                            |
| T                                                                                                                              | E                | 8C:               | 3C2           | 6S4                | 6 <b>0</b> 6                   |                                                  | -                         | •                       | (,                 | ., ,, ,, -,        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| A1                                                                                                                             | 1                | 1                 | 1             | 1                  | ļ                              |                                                  |                           |                         | x <sup>2</sup>     | + y <sup>2</sup> - | + z <sup>2</sup>              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| E A 2                                                                                                                          | 2                |                   | 2             | 2 0                | -1<br>0                        |                                                  |                           |                         | (2z                | $x^{2} - x^{2}$    | <sup>2</sup> _ y <sup>2</sup> | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| $T_1$                                                                                                                          | 3                |                   | -1            | I                  | -1                             | (R                                               | x, Ry,                    | <i>R</i> <sub>z</sub> ) | x *                | y*)                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| 0                                                                                                                              | <i>E</i>         | 6 <i>C</i> .      | $3C_2$        | $(=C_4)$           | <sup>1</sup> $^{2}$ ) $8C_{3}$ | $\begin{array}{c} 1 & (x, \\ 0 & 6C \end{array}$ | y, z) -<br>2              | •                       | ( (xy              | ', xz, j           | ' <b>z)</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| A1                                                                                                                             | 1                | 1                 |               | 1                  |                                | l                                                | 1                         |                         |                    |                    |                               | $\frac{1}{x^2+y^2+z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                            |
| A <sub>2</sub><br>E                                                                                                            | 1<br>2           | -1<br>0           | l             | 1<br>2             | -1<br>-1                       |                                                  | 1<br>0                    |                         |                    |                    |                               | $(2z^2 - x^2 - x^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y <sup>2</sup> ,                             |
| $\begin{bmatrix} T_1 \\ T_2 \end{bmatrix}$                                                                                     | 3                | 1<br>-1           |               | -1<br>-1           | )<br>- (                       | ) —                                              | 1                         | (R <sub>x</sub> , F     | $(r, R_z)$         | ; (x, )            | , z)                          | ~ ) )<br>(YV Y7 V7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |
| 0,                                                                                                                             | E                | 8C3               | 6C2           | 6C4                | 3C2(=                          | = C <sub>4</sub> ²)                              | i                         | 6S4                     | 8 <i>5</i> 6       | 3 <del>a</del> ,   | 6 <b>0</b> 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| A 19<br>A 29<br>E9                                                                                                             | 1<br>1<br>2      | 1<br>1<br>-1      | 1<br>-1<br>0  | 1<br>-1<br>0       |                                | 1<br>1<br>2                                      | 1<br>1<br>2               | 1<br>1<br>0             | 1<br>1<br>-1       | 1<br>1<br>2        | 1<br>-1<br>0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{x^2 + y^2 + z^2}{(2z^2 - x^2 - y^2)}$ |
| $T_{1q}$ $T_{2q}$                                                                                                              | 3<br>3<br>1      | 0<br>0<br>1       | -1<br>1       |                    |                                | 1                                                | 3                         | 1<br>-1                 | 0                  | -1<br>-1           | -1                            | $(R_x, R_y, R_z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (xz, yz, xy)                                 |
| $\begin{array}{c} \mathcal{A}_{2w} \\ \mathcal{A}_{2w} \\ \mathcal{E}_{w} \\ \mathcal{T}_{1w} \\ \mathcal{T}_{2w} \end{array}$ | 1<br>2<br>3<br>3 | 1<br>-1<br>0<br>0 | -1<br>-1<br>1 | -1<br>0<br>1<br>-1 | _                              | 1<br>2<br>1<br>1                                 | -1<br>-2<br>-3<br>-3      | -1<br>0<br>-1           | -1<br>-1<br>0<br>0 | -1<br>-2<br>1<br>1 | 1<br>0<br>1<br>-1             | (x, y, z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |



### **Table 6.5** The $C_{3v}$ character table



W. H.

#### Inorganic Chemistry Chapter 1: Figure 6.13



W. H. EEMAN

# **Consequences of Symmetry**

- Only the molecules which belong to the **Cn**, **Cnv**, or **Cs** group can have a permanent dipole moment.
- A molecule may be chiral only if it does not have an axis of improper rotation **Sn**.
- IR Allowed transitions may be predicted by symmetry operations
- Orbital overlap may be predicted and described by symmetry

### Character table for $C_{\scriptscriptstyle \! \infty \nu}$ point group

|                                | E | 2C <sub>∞</sub> | ••• | ∞ σ <sub>v</sub> | linear,<br>rotations                         | quadratic                                       |
|--------------------------------|---|-----------------|-----|------------------|----------------------------------------------|-------------------------------------------------|
| Α <sub>1</sub> =Σ+             | 1 | 1               |     | 1                | Z                                            | x <sup>2</sup> +y <sup>2</sup> , z <sup>2</sup> |
| A <sub>2</sub> =Σ <sup>-</sup> | 1 | 1               |     | -1               | R <sub>z</sub>                               |                                                 |
| Е <sub>1</sub> =П              | 2 | 2cos(Φ)         |     | 0                | (x, y) (R <sub>x</sub> ,<br>R <sub>y</sub> ) | (xz, yz)                                        |
| E <sub>2</sub> =Δ              | 2 | 2cos(2φ)        |     | 0                |                                              | (x <sup>2</sup> -y <sup>2</sup> , xy)           |
| Е <sub>3</sub> =Ф              | 2 | 2cos(3φ)        |     | 0                |                                              |                                                 |
| •••                            |   |                 |     |                  |                                              |                                                 |

### Character table for $D_{{\scriptscriptstyle \infty}{\scriptscriptstyle h}}$ point group

|                                              | E | 2C <sub>∞</sub> | <br>∞o <sup>v</sup> | .1 | 2S <sub>∞</sub> | <br>∞C'₂ | linear<br>functions,<br>rotations  | quadratic                                       |
|----------------------------------------------|---|-----------------|---------------------|----|-----------------|----------|------------------------------------|-------------------------------------------------|
| Α <sub>1g</sub> =Σ <sup>+</sup> <sub>g</sub> | 1 | 1               | <br>1               | 1  | 1               | <br>1    |                                    | x <sup>2</sup> +y <sup>2</sup> , z <sup>2</sup> |
| A <sub>2g</sub> =Σ⁻ <sub>g</sub>             | 1 | 1               | <br>-1              | 1  | 1               | <br>-1   | R <sub>z</sub>                     |                                                 |
| Е <sub>1g</sub> =П <sub>g</sub>              | 2 | 2cos(φ)         | <br>0               | 2  | -2cos(φ)        | <br>0    | (R <sub>x</sub> , R <sub>y</sub> ) | (xz, yz)                                        |
| E <sub>2g</sub> =Δ <sub>g</sub>              | 2 | 2cos(2φ)        | <br>0               | 2  | 2cos(2φ)        | <br>0    |                                    | (x²-y², xy)                                     |
| E₃g=Φg                                       | 2 | 2cos(3φ)        | <br>0               | 2  | -2cos(3φ)       | <br>0    |                                    |                                                 |
| •••                                          |   |                 | <br>•••             |    |                 | <br>     |                                    |                                                 |
| Α <sub>1u</sub> =Σ+ <sub>u</sub>             | 1 | 1               | <br>1               | -1 | -1              | <br>-1   | Z                                  |                                                 |
| A <sub>2u</sub> =Σ⁻ <sub>u</sub>             | 1 | 1               | <br>-1              | -1 | -1              | <br>1    |                                    |                                                 |
| Е <sub>1u</sub> =П <sub>u</sub>              | 2 | 2cos(φ)         | <br>0               | -2 | 2cos(φ)         | <br>0    | (x, y)                             |                                                 |
| E <sub>2u</sub> =Δ <sub>u</sub>              | 2 | 2cos(2ф)        | <br>0               | -2 | -2cos(2φ)       | <br>0    |                                    |                                                 |
| Е <sub>зи</sub> =Ф <sub>и</sub>              | 2 | 2cos(3φ)        | <br>0               | -2 | 2cos(3φ)        | <br>0    |                                    |                                                 |
| ••••                                         |   |                 | <br>                |    |                 | <br>     |                                    |                                                 |