Molecular Orbital Approach to Bonding

Chemistry 362; spring 2016
Marcetta Y. Darensbourg, Professor
Xuemei Yang, Graduate Assistant
Pokhraj Ghosh, Graduate Assistant
The following slides were mainly a gift from Professor Martyn Poliakoff Of the Department of Chemistry in Nottingham, England. Tom Poliakoff also used these slides and prepared them, to my knowledge. You might also check The MIT open courseware lecture to refresh your memory of molecular orbitals.
MIT Open Courseware lecture https://www.youtube.com/watch?v=Ilaa-iEYDLI
https://www.youtube.com/watch?v=estiedAIXII
https://www.youtube.com/watch?v=GD5CrjyAKx4
http://www.chemtube3d.com/orbitalsCO.htm

Table 1.8 Valence state ionization energies (electron volts)

Element	$1 s$	$2 s$	$2 p$	$3 s$	$3 p$	$4 s$	$4 p$
H	13.6	-	-	-	-	-	-
He	24.6	-	-	-	-	-	-
Li	-	5.4	-	-	-	-	-
Be	-	9.3	-	-	-	--	-
B	-	14.0	8.3	-	-	-	-
C	-	19.4	10.6	-	-	-	-
N	-	25.6	13.2	-	-	-	-
0	-	32.3	15.8	-	-	-	-
F	-	40.2	18.6	-	-	-	-
Ne	-	48.5	21.6	-	-	-	-
Na	-	-	-	5.1	-	-	-
Mg	-	-	-	7.6	-	-	-
Al	-	-	-	11.3	5.9	-	-
Si	-	-	-	14.9	7.7	-	-
P	-	-	-	18.8	10.1	-	-
S	-	--	-	20.7	11.6	-	-
Cl	-	-	--	25.3	13.7	-	-
Ar	-	-	-	29.2	15.8	-	-
K	-	-	-	-	-	4.3	-
Ca	-	-	--	-	-	6.1	-
Zn	-	-	-	-	-	9.4	-
Ga	-	--	-	-	-	12.6	6.0
Ge	--	-	--	-	-	15.6	7.6
As	-	-	-	-	-	17.6	9.1
Se	-	-	-	-	-	20.8	10.8
Br	-	-	--	-	-	24.1	12.5
$\underline{\mathrm{Kr}}$	-	-	-	-	-	27.5	14.3

Source: DeKock, R. L.; Gray, H. B. Chemical Structure and Bonding; Benjamin/Cummings: Menlo Park, CA, 1980; p. 227.

Valence Bond Approach: Localized Bonds, just like Lewis Structures and

Basis of VBSapprBach: overlap orbitals in each bond separately. Each bond is LOCALISED between two atoms.

MOLECULAR ORBITAL APPROACH

In molecular orbital (MO) approach - overlap orbitals for the whole molecule bonding is therefore DELOCALISED. We will look first at DIATOMIC MOLECULES and only later move on to POLYATOMIC MOLECULES.

MOLECULAR ORBITAL THEORY FOR DIATOMIC MOLECULES

In principle, set up Schrödinger wave equation for molecule and solve it.

Solution will involve molecullar orlbitals - similar to atomic orbitals but centred around all of the nuclei in molecule. Each defined by sets of quantum numbers, with electron probability density determined by ψ^{2}, where $\psi=$ molecular wave function.

Approximate method:
At any moment, electron near one nucleus - approximate behaviour like electron in atomic orbital for that atom. Over time - electron associated with other nuclei in molecule. Therefore construct molecular orbitals (m.o.'s) by forming:

Linear Combination of Atomic Orbitals

It is this, LCAO, method which we will use to construct m.o's.

Simplest example - H_{2} : two H atoms H_{A} and H_{B}
Only two a.o.'s ($1 \mathrm{~s}_{\mathrm{A}}, 1 \mathrm{~s}_{\mathrm{B}}$) to form linear combinations.
General rule:

$$
\mathrm{n} \text { a.o.'s } \longrightarrow \mathrm{n} \text { m.o.'s }
$$

So we can only construct 2 m.o.'s for $\mathrm{H}_{\mathbf{2}}$ - and these are:

$$
\psi_{\mathrm{b}}=1 \mathrm{~s}_{\mathrm{A}}+1 \mathrm{~s}_{\mathrm{B}} \text { and } \psi_{\mathrm{a}}=1 \mathrm{~s}_{\mathrm{A}}-1 \mathrm{~s}_{\mathrm{B}}
$$

i.e. the sum $\left(\psi_{b}\right)$ and the difference $\left(\psi_{\mathrm{a}}\right)$ of the constituent a.o.'s.

Consider the electron distribution in each of these:

Consider in each case the INTERNUCLEAR REGION
Probability of finding electron there is:

$$
\psi_{b}>1 s_{A}, 1 s_{B}>\psi_{a}
$$

Electron in this region attracted to BOTH nuclei, therefore most favourable position. Hence, electron in ψ_{b} will be at lower energy than in non-interacting a.o.'s, and electron in ψ a willl be at higher energy still.

Thus an electron in ψ_{b} will hold the nuclei together, one in ψ a will push them apart.

ψ_{b} is a BONDING m.o., ψ_{a} is an ANTI-BONDING m.o.

Thus we can draw ENERGY LEVEL DIAGRAM for m.o.'s of $\mathbf{H}_{\mathbf{2}}$:

By aufbau \& Pauli principles - the 2 electrons go into ψ_{b} - with paired spins.

MO's for H_{2} molecule

http://www.chemtube3d.com/orbitalsCO.htm

BOND ORDER

By Lewis/V.B. theory - one pair of electrons = one bond.
To be consistent, in M.O. theory, define BOND ORDER as follows:
Bond order $=[($ No. of electrons in bonding m.o.'s) - (No. of electrons in antibonding
m.o.'s)]/2

Thus, for H_{2}, bond order $=(2-0) / 2=1 \quad$ (i.e. a single bond - as expected)

Magnetic Properties of Molecules

All electrons paired - repelled by magnetic field - DIAMAGNETIC
One or more unpaired electrons - attracted into magnetic field - PARAMAGNETIC
H_{2} is diamagnetic.

HETERONUCLEAR DIATOMIC MOLECULES

Simplest would be HHe. Differs from H_{2} in two ways:
(1) A.O. energies for H, He different. He - greater nuclear charge, electrons more tightly bound.
(2) Now three electrons to feed into m.o.'s.

For heteronuclear diatomics, m.o.'s formed symmetrically above and below AVERAGE energy of constituent a.o.'s

For HHe, bond order = (2-1)/2 = 1/2 i.e. v. wk. "1/2" bond - not formed under normal conditions - v . unstable.

> Unpaired electron, PARAMAGNETIC.

Note for " He_{2} " - extra electron in antibonding m.o. therefore bond order $=0$. Molecule does not exist - no force to hold atoms together. He is monatomic gas.

M.O.'s for homonuclear diatomics $\left(A_{2}\right)$ for elements of first row of the Periodic Table

For $\mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}$ etc., more complex than for $\mathrm{H}_{2}, \mathrm{HHe}$ - more available a.o.'s-1s, 2s, 2p. Are there restrictions on overlap?
(1) VALENCE electrons only - core electrons too close to nucleus, too tightly bound
(2) Most efficient overlap between orbitals of same energy, i.e. for homonuclear diatomics this means $2 \mathrm{~s} / 2 \mathrm{~s}$, 2p/2p (for heteronuclear diatomics - see later)
(3) SYMMETRY RESTRICTIONS

These are best shown pictorially
Let us see how this works for $2 s$ and $2 p$ orbitals.
s/s

$\mathbf{s + s} \quad$ overlap everywhere positive \rightarrow BONDING M.O.

$\mathbf{s}-\mathbf{s} \quad$ overlap everywhere negative \rightarrow ANTI-BONDING M.O.

Bonding Interaction
Anti-Bonding Interaction

$$
\psi_{\mathrm{b}}=1 \mathrm{~S}_{\mathrm{A}}+1 \mathrm{~S}_{\mathrm{B}}
$$

$\psi_{\mathrm{a}}=1 \mathrm{~S}_{\mathrm{A}}-1 \mathrm{~S}_{\mathrm{B}}$

For p orbitals - three per atom. Define z-axis as molecular axis. Hence p_{z} orbitals can overlap in same way as sorbitals.

$\mathrm{p}_{\mathbf{z}}+\mathrm{p}_{\mathbf{z}}$ overlap everywhere positive \rightarrow BONDING M.O.
Bonding Interaction Anti-Bonding Interaction

$$
\psi_{\mathrm{b}}=p_{z}+p_{z}
$$

End-to-end overlap forms $\sigma 2 p_{z} \mathrm{MO}$

$$
\psi_{\mathrm{a}}=\mathrm{p}_{\mathrm{z}}-\mathrm{p}_{\mathrm{z}}
$$

End-to-end overlap forms $\sigma^{*} 2 p_{z} \mathrm{MO}$

$p_{z}-p_{z} \quad$ overlap everywhere negative \rightarrow ANTI-BONDING M.O.
p_{x}, p_{y} orbitals are perpendicular to axis, but can still interact

$p_{x}+p_{x} \quad$ overlap everywhere positive \rightarrow BONDING M.O.

Bonding Interaction

$$
\psi_{\mathrm{b}}=\mathrm{p}_{\mathrm{x}}+\mathrm{p}_{\mathrm{x}} \text { or } \psi_{\mathrm{b}}=\mathrm{p}_{\mathrm{y}}+\mathrm{p}_{\mathrm{y}}
$$

Side-to-side overlap forms $\Pi 2 p_{x}$ or y $M O$

$p_{x}-p_{x} \quad$ overlap everywhere negative \rightarrow ANTI-BONDING M.O. Also exactly analogous pair from p_{y}.

Need to consider all possibilities (could be needed for heteronuclear diatomics)

Anti-Bonding Interaction

$$
\Psi_{\mathrm{a}}=\mathrm{p}_{\mathrm{x}}-\mathrm{p}_{\mathrm{x}} \text { or } \Psi_{\mathrm{b}}=\mathrm{p}_{\mathrm{y}}-\mathrm{p}_{\mathrm{y}}
$$

Side-to-side overlap forms $\Pi^{*} 2 p_{x}$ or y $M O$

Side-to-side overlap forms $\Pi 2 p_{\mathrm{x} \text { or } \mathrm{y}} \mathrm{MO}$
Side-to-side overlap forms $\Pi^{*} 2 p_{x}$ or y $M O$

$\mathrm{s} / \mathrm{p}_{\mathrm{z}}$ gives bonding and anti-bonding pair.

s / p_{x} or p_{y} and p_{z} / p_{x} or p_{y} all non-bonding (positive and negative overlaps cancel. No overlap at all for p_{x} / p_{y}.

Before moving on to show the energy level diagram for A_{2} molecules - we need to be clear about the labels for m.o.'s

LABELS FOR M.O.'S

Two types of m.o. - in terms of symmetry to rotation about molecular axis.
$\mathbf{s} / \mathbf{s}, \mathrm{p}_{\mathbf{z}} / \mathbf{p}_{\mathbf{z}} . \mathbf{s} / \mathbf{p}_{\mathbf{z}}$ - completely symmetrical to such rotation.
All such given Greek symbol : ${ }^{-}$("sigma")
$p_{x} / p_{x}, p_{y} / p_{y}-$ change sign every 180° rotation - these are given symbol : $\mathbb{\pi}$ ("pi")

Note - same symbols as for valence bonds (above)
Bonding and antibonding orbitals of each type differentiated by asterisk ("star") on the antibonding ones.

What is the m.o. energy level for these A_{2} molecules?
M.O.Energy Level Diagram for A_{2} ($\mathrm{A}=\mathrm{Li}, \mathrm{Be}$)

Use Aufbau, Pauli, Hund - just as in filling atomic orbitals
Li_{2} Only two valence electrons, i.e. $\sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{s}}{ }^{0}$. Bond order $=1 . \quad$ Diamagnetic
Li_{2} exists in gas phase over metallic lithium.
"Be ${ }^{2 "} \quad \sigma_{s}{ }^{2} \sigma_{\mathrm{s}}^{*} \quad \begin{aligned} & \text { Bond order }=0-\text { no net bonding } \\ & \text { energy, so molecule does not exist. }\end{aligned}$
Beryllium in gas phase is monatomic.

m.o.'s derived from 2p a.o.'s:

1. p_{x}, p_{y} alike in all respects except orientation, so m.o.'s derived from them must be degenerate.
2. sideways (π) overlap is less efficient than end-on (σ), so π m.o.'s less bonding than σ

M.O.Energy Level Diagram for A_{2} ($A=0$)

Electronic configuration: $\sigma_{\mathrm{s}}{ }^{2} \sigma^{*}{ }_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{pz}}{ }^{2} \pi_{\mathrm{px}}{ }^{2} \pi_{\mathrm{py}}{ }^{2} \pi^{*} \mathrm{px}{ }^{1} \pi^{*}{ }_{\mathrm{py}}{ }^{1}$
Note Hund's rule again! Bond order $=(8-4) / 2=2$ (double bond) and PARAMAGNETIC.
V.B. theory could not explain paramagnetism.

O_{2} is only one of a series of diatomic oxygen species:
$\mathrm{O}_{2}{ }^{+}$- "oxidation of oxygen" in $\mathrm{O}_{2}{ }^{+} \mathrm{PtF}_{6}{ }^{-} ; \mathrm{O}_{2}$ - normal form of oxygen $\mathrm{O}_{2}{ }^{-}$- superoxide ion, e.g. $\mathrm{K}^{+} \mathrm{O}_{2}{ }^{-} ; \mathrm{O}_{2}{ }^{2-}$ - peroxide ion, e.g. $\mathrm{Na}_{2}{ }^{2+} \mathrm{O}_{2}{ }^{2-}$

Electron configurations:
$\mathrm{O}_{2}{ }^{+} \quad \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{pz}}{ }^{2} \pi_{\mathrm{px}}{ }^{2} \pi_{\mathrm{py}}{ }^{2} \pi_{\mathrm{px}}{ }^{1} \pi_{\mathrm{py}}{ }^{0}$
elecron lost from anti-bonding m.o. - stronger
bond than O_{2}. Bond order $=2.5$
Paramagnetic - but less so than $\mathbf{O}_{\mathbf{2}}$ - only one unpaired electron.
$\mathrm{O}_{2}{ }^{-} \quad \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{pz}}{ }^{2} \pi_{\mathrm{px}}{ }^{2} \pi_{\mathrm{py}}{ }^{2} \pi_{\mathrm{px}}^{*}{ }^{2} \pi_{\mathrm{py}}{ }^{1}$
electron gained in anti-bonding m.o. - weaker bond than O_{2}. Bond order $=1.5$ Paramagnetic (one unpaired electron).

Superoxide Dismutase (SOD)

$\mathrm{O}_{2}{ }^{2-} \quad \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{pz}}{ }^{2} \pi_{\mathrm{px}}{ }^{2} \pi_{\mathrm{py}}{ }^{2} \pi^{*} \mathrm{px}^{2} \pi^{*}{ }_{\mathrm{py}}{ }^{2}$
Note bond lengths
$\mathrm{O}_{2}{ }^{+}$- 112 pm
$\mathrm{O}_{2}-120 \mathrm{pm}$
$\mathrm{O}_{2}^{-}-126 \mathrm{pm}$
$\mathrm{O}_{2}{ }^{2-}-149 \mathrm{pm}$

Weaker bonds, therefore longer bonds
$\mathrm{F}_{2} \quad$ Isoelectronic with $\mathrm{O}_{2}{ }^{2-}$
Electronic configuration:

$$
\sigma_{\mathrm{s}}^{2} \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{pz}}{ }^{2} \pi_{\mathrm{px}}{ }^{2} \pi_{\mathrm{py}}{ }^{2} \pi_{\mathrm{px}}^{*}{ }^{2} \pi_{\mathrm{py}}{ }^{2}
$$

Bond order =1. Diamagnetic
"Ne ${ }^{2}$ " $\quad \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{pz}}{ }^{2} \pi_{\mathrm{px}}{ }^{2} \pi_{\mathrm{py}}{ }^{2} \pi_{\mathrm{px}}^{*}{ }^{2} \pi_{\mathrm{py}}^{*}{ }^{2} \sigma_{\mathrm{pz}}^{*}{ }^{2} \quad$ Bond order $=0$

Therefore does not exist. Neon is a monatomic gas

TABLE 9.5				Bond Energies (in kJ/mol)*							
	Single Bonds										
	H		C	N	0	S	F	Cl		Br	1
H	432										
C	411		346								
N	386		305	167							
0	459		358	201	142						
S	363		272	-	-	226					
F	565		485	283	190	284	155				
Cl	428		327	313	218	255	249	240			
Br	362		285	-	201	217	249	216		190	
I	295		213	-	201	-	278	208		175	149
Multiple Bonds											
$\mathrm{C}=\mathrm{C}$		602		$\mathrm{C}=\mathrm{N}$	615	$\mathrm{C}=\mathrm{O}$			745	(799	CO_{2})
$\mathrm{C}=\mathrm{C}$		835		$\mathrm{C}=\mathrm{N}$	887	$\mathrm{C}=0$			1072		
$\mathrm{N}=\mathrm{N}$		418		$\mathrm{N}=\mathrm{O}$	607	$\mathrm{S}=0$	in SO_{2})		532		
$\mathrm{N} \equiv \mathrm{N}$		942		$\mathrm{O}=\mathrm{O}$	494	$S=0$	in SO_{3})		469		

Bond Dissociation Energies

$\mathrm{O}-\mathrm{O}$	$498.36 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{Cl}-\mathrm{O}$	267.47
$\mathrm{N}-\mathrm{O}$	631.32	$\mathrm{Br}-\mathrm{O}$	235.4
C-O	1076.38	I-O	240
S-O	517.90		
P-O	598		
$\mathrm{Si}-\mathrm{O}$	799.6		
Source	CRC Handbook of	hemistry	and Physics
	87th ed. ,"Bond Dis	iation En	rgies" (Y.-L
	Ruo and J.A. Kerr)	. 9-54 to	-59 (2006)

What about B, C and N??

Energy difference between s and p orbitals is not so great as in O and F. Therefore there is significant interaction of sigma molecular orbitals Derived from 2s and 2p.

Valence State Ionization Energies (eV)
2s $2 p \quad \Delta$

B	14.0	8.3	5.7
C	19.4	10.6	8.8
N	25.6	13.2	12.4
O	32.3	15.8	16.5
F	40.2	21.6	18.6

This leads to a different ordering of the mo 's. The so-called "s-p mixing". It's not difficult - look it up in an advanced book, if you are interested

What about B, C and N??

Holecular Orbital Configaration for H_{2}

This is of major importance:

$$
\sigma_{\mathrm{s}}{ }^{2} \sigma_{\mathrm{s}}^{*}{ }^{2} \pi_{\mathrm{px}}{ }^{2} \pi_{\mathrm{py}}{ }^{2} \sigma_{\mathrm{pz}}{ }^{2}
$$

Bond order = (8-2)/2 = 3
i.e. triple bond, very strong, stable molecule. Diamagnetic. (Note the different order of s/p orbitals)

C_{2} is important in flames and comets, interstellar space

Light Emission from Comets

CN

- Light from the Sun is absorbed by cometary molecules
The absorbed energy is re-emitted at specific wavelengths (colours) The light is detected with a spectrometer on a large telescope

Heteronuclear Diatomic Molecules (AB) Involving First Row Elements

Remember two basic principles:
(1) A.o. energies decrease as nuclear charge increases.
(2) Bonding/antibonding m.o.'s formed symmetrically below/above average of a.o. energies, respectively.
M.o. energy level diagram based on that for A_{2} :

Molecular Orbital Energy Level Diagram for a Heteronuclear Diatomic

e.g. for CO - similar to N_{2} - but with different a.o. energies for C and O , i.e. O > C.

Electronic configuration:
$\sigma_{s}{ }^{2} \sigma_{s}^{*}{ }^{2} \sigma_{p z}{ }^{2} \pi_{p x}{ }^{2} \pi_{p y}{ }^{2}$

Bond order $=(8-2) / 2=3$

Just like \mathbf{N}_{2} : ISOELECTRONIC (i.e. same no. of electrons).
 DIAMAGNETIC.

A different type of heteronuclear diatomic:
HF H $1 s^{1} \quad \mathrm{~F} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p_{\mathrm{x}}{ }^{2} 2 p_{\mathrm{y}}{ }^{2} 2 p_{\mathrm{z}}{ }^{1}$ Overlap between H1s and $\mathrm{F} 2 p_{\mathrm{z}}$ giving:

Electronic configuration:

$\left[F 2 s^{2} 2 p^{4}\right] \sigma_{s p}{ }^{2} \sigma^{*}{ }^{\prime}{ }^{0}$

Diamagnetic. Bond order = 1

F2s non-bonding - too low in energy

F2p $p_{x}, 2 p_{y}$ non-bonding because of wrong symmetry

Molecular Orbitals in Polyatomic Molecules

In the vast majority of cases, bonds can be described as LOCALISED between pairs of nuclei - therefore can use VB approach.

At this stage we only need to use molecular orbitals (m.o's) when DELOCALISATION of electrons occurs - i.e. when several Lewis structures have to be drawn.

Even in these cases we can use the VB approach for the σ-framework, and construct m.o.'s only for the π-bonds.

Just look at TWO examples - one inorganic $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, one organic (benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$).

Carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$. Regular trigonal planar, equal bonds, all angles 120°.
σ-framework: use sp^{2} hybrids on both C and O 's.
2 electrons in each bond + lone pairs in remaining sp ${ }^{2}$
hybrids on O's = 18 electrons

Total number of valence electrons $=4(\mathrm{C})+$ 18 (3 O's) + 2 (negative charges) = 24

Therefore have 6 electrons to put into π-type orbitals

Which orbitals are available for π-bonding?

On each atom, s^{2} hybrid formation uses p_{x} and p_{y} orbitals. Therefore one p_{z} orbital on each atom is available for π-bonding - 4 orbitals in total.

Remember general rule:

Therefore we will form 4 m.o.'s
Details of how to calculate what these look like left until later.

By analogy with diatomic m.o.'s - most strongly bonding m.o. will be the one which increases electron density in all of the bonds:

The most antibonding m.o. will have NODES on all of the bonds:

The remaining two turn out to be non-bonding, giving the energy level for the π-bonding in $\mathrm{CO}_{3}{ }^{2-}$ as follows:

All electrons paired - therefore DIAMAGNETIC

Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Remember that there are two equivalent Lewis structures for benzene:

Simplified drawing - CH at each corner.

Benzene is in fact a regular hexagon-all C-C bonds equal, and with a length intermediate between $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$.
σ-framework - $\mathbf{s p}^{2}$ hybridisation at each \mathbf{C}, forming a σ-bond to \mathbf{H} and two adjacent C atoms
π-bonding - a \mathbf{p}_{z} orbital on each C, i.e. 6 a.o.'s, therefore 6 m.o.'s will be formed.
A.o.'s for π-bonding:

sigma bonds in Benzene

By analogy with carbonate - most strongly bonding m.o. formed by adding all of these a.o.'s together (incr. electron density in each bond).

Also by analogy with carbonate - most strongly antibonding m.o. formed by combining all of these a.o.'s together to give NODES between each pair of C atoms

In addition, the remaining 4 m.o.'s will comprise two WEAKLY BONDING and two WEAKLY ANTIBONDING combinations
strongly antibonding
Thus we have a π-bonding m.o. energy level for benzene:

There are 6 electrons (one per C atom) - and these fill the strongly and weakly antibonding m.o.'s. These orbitals are DELOCALISED, and explain the observed properties of benzene. Note stability as all bonding m.o.'s are full, and all electrons paired.

Note - there is a simple pictorial method for obtaining the relative energies of the π-m.o.'s of benzene and any other cyclic $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}$ compound. Draw a circle round the shape of the molecule with one corner at the lowest part of the circle - and the corners just touching the circle. This gives the m.o. energies!

Any molecule where π-electrons are delocalised is said to show CONJUGATION - and the properties of such molecules are different from those with localised multiple bonds -lots of examples in Organic Chemistry.

In particular, cyclic compounds like benzene (with a FULL SHELL of π-m.o's) are described as being AROMATIC. Aromaticity confers specific properties on such compounds. In particular they are more stable (lower energy) than would have been predicted on the basis of localised double bond formation.

