Shapes of molecules, hybrid orbitals and symmetry descriptions

Lectures 10/11 2017362 Spring term

Some of these ppt slides from Dr. Oleg Ozerov's lecture in 2014

Lewis Structures

- A bond between two atoms is formed by means of sharing of a pair of electrons
$>$ Each atom shares electrons with neighbors to achieve a total of eight valence electrons
$>$ Determine connectivity of the atoms in the molecule
$>$ Sum up the total number of valence electrons in the molecule
$>$ Distribute the electrons so that each atom acquires an octet (duet for H!) in either
a) bonding pairs (denoted: or -) shared between a pair of atoms, or
b) lone pairs (denoted :) that belong to a single atom (i.e., "unused"
in making bonds and occupy more space than bonded pairs).

Examples: $\mathrm{HF}, \mathrm{CF}_{4}, \mathrm{NH}_{3}, \mathrm{COCl}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{CN}_{2}, \mathrm{~N}_{3}{ }^{-}, \mathrm{N}_{5}{ }^{+}$

Vocabulary and Concepts

Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts

Valence: Number of electrons an atom uses in bonding.
Oxidation State or Number: Charge on atoms according to a set of rules That consider the electronegativity of atoms within the molecule or material.

1) In pure element, Oxidation Number $=0$
2) F, the most electronegative element, in a molecule is -1
3) O is typically -2 ; sometimes (in peroxides), -1
4) Alkali metals, +1; Alkaline Earth metals, +2; Gp 3, generally +3; Transition metals variable + charged.
5) H is +1 when combined with more electroneg. element; -1 when combined with more electropositive element. Therefore, H in compound with any M is a hydride, H^{-1}.
6) Summation of Ox. States must equal charge on ion; or zero if neutral molecule.

Formal Charges: Charge on atom according to equation:
F.C. = \# valence electrons - \# of electrons in non-bonded pairs - $1 / 2$ \# of electrons in bonds

Coordination number: Number of atoms bonded to the atom in question.

Resonance Structures: A Way to Delocalize Electrons in Valence Bond Descriptions

$>$ Resonance structures represent different Lewis structures for the same molecule
> Resonance structures must have the same connectivity and the same total no. of electrons
$>$ Resonance structures are not isomers, but are various limiting descriptions of the same molecule.
> If a molecule can be represented by more than one viable resonance structure, its electronic structure should be thought of as a "blend" of the resonance structures. Such "blending" generally lowers the energy of the system.
> Resonance structure may be of equal or unequal importance ("weight").
> Guiding principles: Favor octets; minimize formal charges*; disfavor formal positive charge on more electronegative atoms

*Pauling's Electroneutrality Principle

Hypervalence

> Hypervalence may be a misnomer by some definitions, but it would probably be the most commonly used misnomer in chemistry
$>$ Aka "octet expansion"
> Can be represented either by an increased number of atoms bound to the "hypervalent" atom or by an increased number of (multiple) bonds to the "hypervalent" atom. Applies to $3^{\text {rd }}$ row and higher non-metals bonds to highly electronegative elements.

Geometries may be predicted via VSEPR: Valence Shell Electron Pair Repulsion

$>$ Electron pairs of bonds and lone pairs repel each other
$>$ The geometry around any atom is a consequence of minimizing these repulsive interactions
> Lone pairs are considered to be larger than bonding pairs
> Multiple bonds are considered to be in the same space as, but larger than, single bonds
$>$ Several common geometries depending on the number of "occupants" around the atom in question
$>$ The "Steric number" of the molecule determines the hybrid orbitals used to account for sigma bonds and lone pairs

Descriptions of geometries in mono-centric molecules: It is where The atoms are. . .

VSEPR rationalizes bond angles and geometry of molecules

106.6°

104.5°
© 2011 Pearson Education, Inc.

Equatorial lone pair

Axial lone pair
© 2011 Pearson Education, Inc.

For $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}, lone pairs are in sp^{3} hybrid orbitals; for $\mathrm{H}_{2} \mathrm{~S}$ and PH_{3} No hybrid orbitals needed.

For SF_{4} the lone pair is more stable in the $s p^{2}$ subset of the $s p^{3} d$ hybrid orbitals

How about the 5 pairs of electrons about Cl in ClF_{3} ? Analysis of lone pair/lone pair vs. lone pair/bonded pair vs. bonded pair/bonded pair repulsions

®2Genclusion: larger pairs of electrons adopt equatorial plane positions, i.e., sp^{2} subset

Steric Number	None	Number of Lone Pairs on Central Atom		
		1	2	3
2	$: \mathrm{Cl}=\mathrm{Be}=\mathrm{Cl} \dot{\square}$			
3				
4				
5				
6				

$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { \# of } \\ \text { Atom } \\ s\end{array} & \begin{array}{c}\text { \# of } \\ \text { electron } \\ \text { pairs }\end{array} & \begin{array}{c}\text { Formula } \\ \text { Type }\end{array} & \text { Geometry } & \begin{array}{c}\text { Bond } \\ \text { Angle }\end{array} & \begin{array}{c}\text { Examples }\end{array} & \begin{array}{c}\text { Hybridiza } \\ \text { tion }\end{array} & \text { Structure } \\ \hline 3 & 0 & \mathrm{AB}_{2} & \text { Linear } & 180 & \mathrm{CO}_{2}, \mathrm{CS}_{2}, & \\ \mathrm{BeH}_{2}\end{array}\right]$

Symmetry

Intuitively, we know symmetry when we see it.
But how do we put in quantitative terms that allows us to compare, assign, classify?

Symmetry: mirror planes

Symmetry

C_{3} Rotation Axis

Chirality: Non-superimposable mirror images (aka optical isomers or enantiomers)

Specifically, a chiral compound can contain no improper axis of rotation $\left(S_{n}\right)$, which includes planes of symmetry and inversion center. Asymmetric molecules are always chiral.

Symmetry Operations and Symmetry Elements

Definitions:

$>$ A symmetry operation is an operation on a body such that, after the operation has been carried out, the result is indistinguishable from the original body (every point of the body is coincident with an equivalent point or the same point of the body in its original orientation).
$>$ A symmetry element is a geometrical entity such as a line, a plane, or a point, with respect to which one or more symmetry operations may be carried out

Symmetry Operation	Symmetry Element	Notation
Identity	-	E
Reflection in a plane	Plane of symmetry	σ
Proper rotation	Rotation axis (line)	C_{n}
Rotation followed by reflection in the plane perpendicular to the Improper rotation axis (line) S_{n} Inversion		

Let's look for these in molecules

Notes
(i) symmetry operations more fundamental, but elements often easier to spot.
(ii) some symmetry elements give rise to more than one operation - especially rotation - as above.

ROTATIONS - AXES OF SYMMETRY

Some examples for different types of molecule: e.g.

Line in molecular plane, bisecting HOH angle is a rotation axis, giving indistinguishable configuration on rotation by 180°.

By VSEPR - trigonal, planar, all bonds equal, all angles 120°. Take as axis a line
perpendicular to molecular plane, passing through B atom.

axis perpendicular
to plane
N.B. all rotations CLOCKWISE when viewed along -z direction.

Symbol for axes of symmetry

where rotation about axis gives indistinguishable configuration every $(360 / n)^{0}$ (i.e. an n-fold axis)

Thus $\mathrm{H}_{2} \mathrm{O}$ has a C_{2} (two-fold) axis, BF_{3} a C_{3} (three-fold) axis. One axis can give rise to >1 rotation, e.g. for BF_{3}, what if we rotate by 240° ?

Must differentiate between two operations.
Rotation by 120° described as $\mathrm{C}_{3}{ }^{1}$,
rotation by 240° as $\mathrm{C}_{3}{ }^{2}$.

In general C_{n} axis (minimum angle of rotation (360/n) ${ }^{0}$) gives operations $C_{n}{ }^{m}$, where both m and n are integers.

When $m=n$ we have a special case, which introduces a new type of symmetry operation.....

IDENTITY OPERATION

For $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2}{ }^{2}$ and for $\mathrm{BF}_{3} \mathrm{C}_{3}{ }^{3}$ both bring the molecule to an IDENTICAL arrangement to initial one.

Rotation by 360° is exactly equivalent to rotation by 0°, i.e. the operation of doing NOTHING to the molecule.

xenon tetrafluoride, XeF_{4}

cyclopentadienide ion, $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$

benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Examples also known of C_{7} and C_{8} axes.

If $\mathbf{a} \mathrm{C}_{2 \mathrm{n}}$ axis (i.e. even order) present, then C_{n} must also be present:

Therefore there must be a C_{2} axis coincident with C_{4}, and the operations generated by C_{4} can be written:

$$
C_{4}^{1}, C_{4}^{2}\left(C_{2}^{1}\right), C_{4}^{3}, C_{4}^{4}(E)
$$

Similarly, a C_{6} axis is accompanied by C_{3} and C_{2}, and the operations generated by C_{6} are:

$$
\mathrm{C}_{6}{ }^{1}, \mathrm{C}_{6}{ }^{2}\left(\mathrm{C}_{3}{ }^{1}\right), \mathrm{C}_{6}{ }^{3}\left(\mathrm{C}_{2}{ }^{1}\right), \mathrm{C}_{6}{ }^{4}\left(\mathrm{C}_{3}{ }^{2}\right), \mathrm{C}_{6}{ }^{5}, \mathrm{C}_{6}{ }^{6}(\mathrm{E})
$$

Molecules can possess several distinct axes, e.g. $B F_{3}$:

Three C_{2} axes, one along each $B-F$ bond, perpendicular to C_{3}

Mirror Planes within BF_{3}. Of two types,

Center of Inversion in Molecules: $x, y, z->-x,-y,-z$

No

(Proper) Rotation in Chemistry

Reflection in a Plane in Chemistry

5	0	AB_{4}	Tetrahedron	109.5	$\mathrm{CCl}_{4}, \mathrm{CH}_{4}$, SiBr_{4}	sp^{3}	
5	1	AB_{4}	Distorted tetrahedron (Seesaw)		$\mathrm{SF}_{4}, \mathrm{SBr}_{4}$ SeCl_{4}	$\mathrm{sp}^{3} \mathrm{~d}^{2}$	
5	2	AB_{4}	Square planar	90, 180	XeF_{4}	$\mathrm{sp}^{3} \mathrm{~d}^{2}$	0

VSEPR Theory

\# of Atom s	\# of electron pairs	$\begin{gathered} \text { Formula } \\ \text { Type } \end{gathered}$	Geometry	Bond Angle	Examples	Hybridiza tion	Structure
3	0	AB_{2}	Linear	180	$\begin{gathered} \mathrm{CO}_{2}, \mathrm{CS}_{2} \\ \mathrm{BeH}_{2} \end{gathered}$		$0+1$
3	1	AB_{2}	Bent	117.5	$\begin{gathered} \mathrm{GeCl}_{2,} \mathrm{SO}_{2} \\ \mathrm{NO}_{2} \end{gathered}$	$s p^{2}$	
3	2	AB_{2}	Bent	105	$\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$	sp^{3}	
4	0	AB_{3}	Trigonal planar	120	$\mathrm{BCl}_{3}, \mathrm{AlBr}_{3}$,	$s p^{2}$	
4	1	AB_{3}	Pyramidal	107	$\begin{gathered} \mathrm{NH}_{3}, \mathrm{PCl}_{3}, \\ \mathrm{AsBr}_{3} \end{gathered}$	$s p^{3}$	
4	2	AB_{3} (Inter halogen)	T-shaped	$\begin{aligned} & 90, \\ & 180 \end{aligned}$	$\mathrm{ICl}_{3}, \mathrm{BrF}_{3}$,	$s p^{3} d$	

VSEPR YOGA

VSEPR and the AXE Description of Electron Arrangements

Molecule Type	Shape	Electron arrangement ${ }^{\dagger}$	Geometry	Examples
$\mathrm{AX}_{2} \mathrm{E}_{0}$	Linear			$\mathrm{BeCl}_{2}, \mathrm{HgCl}_{2}, \mathrm{CO}_{2}$
$\mathrm{AX}_{3} \mathrm{E}_{0}$	Trigonal planar			$\mathrm{BF}_{3}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{3}$
$\mathrm{AX}_{4} \mathrm{E}_{0}$	Tetrahedral			$\mathrm{CH}_{4}, \mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}, \mathrm{TiCl}_{4}, \mathrm{XeO}_{4}$
$\mathrm{AX}_{5} \mathrm{E}_{0}$	Trigonal bipyramidal			PCl_{5}
$\mathrm{AX}_{6} \mathrm{E}_{0}$	Octahedral			$\mathrm{SF}_{6}, \mathrm{WCl}_{6}$

Bond
Spatial
Electron pair
Lone pair substitutions angles geometry geometry
180°

Linear
(sp)

109.5

Tetrahedral

$\left(s p^{3}\right)$
Trigonal bipyramidal
$\left(d s p^{3}\right)$

Trigonal pyramidal

Bent

Square planar

T-shaped

Linear

A Simple Approach to Point Group Assignments

