Acid Rain: Non-metal oxides

Element oxides

Various element oxides can combine with water to produce acids or bases

Basic oxides – upon reaction with water form materials that are stronger Brønsted bases than water (decrease [H⁺]).

Acidic oxides – upon reaction with water form materials that are stronger Brønsted acids than water (increase [H⁺])

Amphoteric oxides – upon reaction with water form materials that can react with both bases and acids

Examples: Li_2O , CaO, and BaO react with water to form basic solutions and can react with acids directly to form salts.

Likewise, SO_3 , SO_2 , CO_2 , N_2O_5 , P_2O_3 and P_2O_5 form acidic aqueous solutions and can react directly with bases to give salts.

Element oxides: Which react with water to give E⁺(OH)⁻ and which give EO⁻H⁺

Basic oxides – typically metal oxides (oxides of the more **electropositive** elements: Na_2O , MgO, CaO, etc.)

Acidic oxides – typically non-metal oxides (oxides of the more **electronegative** elements)

Amphoteric oxides – typically oxides of the elements of intermediate electronegativity

**For the same element, the higher the oxidation state, the more acidic the oxide is.

<u>Amphoteric</u> is not to be confused with <u>amphiprotic</u> – a substance that can act as both a Brønsted acid and base

Oxides as Acid and Basic Anhydrides

Basic Oxides (usually "ionic")

CaO + 2 H_2O —> Ca²⁺ + 2 OH⁻, a moderately strong base

 $[O^{2-}] + H_2O \longrightarrow 2OH^-$ K > 10²²

Alkali metal and alkaline earth oxides are basic (dissolve in acid). Or, they react directly with acidic oxides:

$$CaO + SO_3 \longrightarrow Ca^{2+} SO_4^{2-}$$

 $CaO + CO_2 \longrightarrow Ca^{2+} CO_3^{2-}$

Examples of Acidic Oxides, or Acid Anhydrides, reactions with water give "oxy-acids"

Note: The non-metal element-oxygen (E–O) bond is not broken on dissolution.

either

an E – O – E group is hydrolyzed by water (as in P_4O_{10});

or

water is added across the E=O double bond (as in CO_2).

Examples of Acidic Oxides, or Acid Anhydrides, reactions with water give "oxy-acids"

Acidic Oxides (Non-metal Oxides or Acid Anhydrides)

element-oxygen (E–O) bond is not broken on dissolution either

an E – O – E group is hydrolyzed by water

or

water is added across a double bond

Acidic Oxides not soluble in water will dissolve in basic aqueous solutions to produce salts
eg. As₂O₃ + 2NaOH(aq) ---> 2NaH₂As O₃
(Often seen for anhydrides of weaker acids.)

Amphoteric Oxides

Dissolve in acids or bases - if strong enough.

Eg., BeO, SnO, certain forms of Al_2O_3

In strong <u>acids</u>:

 $ZnO + 4 HCl(aq) \longrightarrow H_3O^+ [ZnCl_4]^{2-}$

 $ZnO + 2HNO_{3}(aq) \longrightarrow Zn(OH_{2})_{6}^{2+} + NO_{3}^{-}$

In strong <u>base</u>: $ZnO + 2NaOH(aq) \longrightarrow 2Na^{+}(aq) + [Zn(OH_4)]^{2-}(aq)$

Transition Metal Oxides Acidity or Basicity Depends on Oxidation Number (State)

MnO is basic; MnO₂ is amphoteric MnO₃ is acidic

Figure 4.6 Shriver, et al.

What determines aqueous acid "strength"?

Lewis approach to acid/base interactions

Boron trifluoride-ammonia adduct

Gilbert Newton Lewis 1875 – 1946

Lewis Concept

Lewis, 1930s:

Base is a donor of an electron pair.

Acid is an acceptor of an electron pair.

For a species to function as a Lewis acid, it needs to have an accessible empty orbital.

For a species to function as a Lewis base it needs to have an accessible electron pair.

Examples of Lewis acids: **BF**₃, **AICI**₃, **SbF**₅, **Na+**, **H+**, **S**⁶⁺, etc.

Examples of Lewis bases: **F**⁻, **H**₂**O**, **Me**₃**N**, **C**₂**H**₄, **Xe**, etc.

Lewis Continued

A more general view also classifies compounds that can generate a species with an empty orbital as Lewis acids. Then we can include B_2H_6 , AI_2CI_6 , HCI etc.

Since H⁺ and any cation from a solvent autodissociation is a Lewis acid, and anything that can add H⁺ or a solventderived cation is a Lewis base, the Lewis acid concept effectively includes the ones discussed previously.

Lewis Continued

Acid-base reactions under the Lewis model are the reactions of forming adducts between Lewis acids and bases.

 $BF_{3} + Me_{3}N \rightarrow F_{3}B-NMe_{3}$ $HF + F^{-} \rightarrow FHF^{-}$ $SiF_{4} + 2F^{-} \rightarrow SiF_{6}^{2-}$ $CO_{2} + OH^{-} \rightarrow HCO_{3}^{-}$ $TiCl_{4} + 2Et_{2}O \rightarrow TiCl_{4}(OEt_{2})_{2}$

In fact, any chemical compound can be mentally disassembled into Lewis acids and bases:

S⁶⁺ + 6F⁻ → SF₆ C⁴⁺ + 3H⁻ + NH₂⁻ → CH₃⁺ + NH₂⁻