Worksheet VII

1. Draw the potential energy curve for a diatomic molecule. Clearly label the bond dissociation energy and equilibrium bond length on your drawing.

- 2. Two 3*d* orbitals can overlap in either a σ fashion or in a π fashion.
 (a) Show how two 3*d* orbitals can have cr overlap. Draw the resulting molecular orbitals.
 - (b) Show how two 3d orbitals can have π overlap. Draw the resulting molecular orbitals.
- 3. For a diatomic molecule of oxygen (O₂), we define the bond as lying along the *z* axis.(a) Draw the valence MO diagram for O₂. Include labels for the molecular orbitals.

- (b) Which valence atomic orbitals combine to form σ MOs in O₂? *Be specific*.
- (c) Which valence atomic orbitals combine to form π MOs in O₂? *Be specific*.
- (d) Write the valence orbital occupancy for O_2 .
- (e) Is O₂ diamagnetic or paramagnetic?
- (f) What is the net σ bond order for this molecule?
- (g) What is the net π bond order for this molecule?
- (h) What is the overall bond order for this molecule?
- (i) How many electrons must be added to O_2 to reduce the bond order to zero? If this number of electrons is added, what product(s) will be formed?

For questions 4 and 5, you will want to sketch the MO diagram for N_2 in order to work out the orbital occupancies. There is no need to draw out the same diagram twice (once for each question). Remember that N_2^+ has one less electron than N_2 and N_2^- has one more electron than N_2 .

4. The bond dissociation enthalpies for N_2 and N_2^- are 945 kJ/mol and 765 kJ/mol respectively. (*There is only a small difference between enthalpies and energies.*) Using an argument based on MO theory, explain why N_2^- has a smaller bond dissociation energy than N_2 .

5.

- (a) Draw Lewis diagrams for N_2^+ and N_2^- . What bond orders would you predict from the Lewis diagrams?
- (b) Determine the bond orders for these two ions using MO theory. Do they agree with the values obtained for your Lewis diagrams?
- 6. When we draw Lewis diagrams, we ignore the core electrons and focus only on the valence electrons. Discuss how MO theory provides support for this practice.
- 7. Use an MO diagram to show that Be_2 should not exist.
- 8. In the gas phase, it is possible to make exotic diatomic molecules like LiF (which normally exists in a lattice rather than as a diatomic molecule).

Atomic Orbital Energies

Li		F	
1 <i>s</i>	-4.77 Ry	1 <i>s</i>	-51.2 Ry
2 <i>s</i>	-0.40 Ry	2 <i>s</i>	-2.95 Ry
		2 <i>p</i>	-1.37 Ry

*1 Ry = $R_{\rm H} = 2.179 \times 10^{-18} \, {\rm J}$

- (a) The above energies were determined experimentally. Name and briefly describe the technique used to make these measurements.
- (b) Develop the MO diagram for LiF. Clearly indicate which atomic orbitals mix to make which molecular orbitals. Show the orbital occupancy in LiF and estimate the bond order.
- (c) We would expect LiF to have substantial ionic character. Does your MO work agree with this expectation? Explain.
- (d) Does your MO work agree with a Lewis diagram for LiF?