Symmetry Aspects of Qualitative MO Theory

Chemistry 673
Applications to Simple Main-Group and T.M. Molecules

Perturbation Theory

- Begin with a system with known energies and wavefunctions, $E_1^{(0)}$, $E_2^{(0)}$, $E_3^{(0)}$, ..., $\psi_1^{(0)}$, $\psi_2^{(0)}$, $\psi_3^{(0)}$, ... for an *unperturbed* problem with Hamiltonian $\mathcal{H}^{(0)}$.
- Introduce a "perturbation", \mathcal{H}' , such that the new Hamiltonian for the system is $\mathcal{H} = \mathcal{H}^{(0)} + \mathcal{H}'$.

$$\begin{split} E_i &= E_i^{(0)} + E_i^{(1)} + E_i^{(2)} + \dots = E_i^{(0)} + H'_{ii} + \sum_{j \neq i} \frac{\left| H'_{ij} \right|^2}{E_i^{(0)} - E_j^{(0)}} + \dots \\ \psi_i &= \psi_i^{(0)} + \psi_i^{(1)} + \dots = \psi_i^{(0)} + \sum_{j \neq i} \frac{H'_{ij}}{E_i^{(0)} - E_j^{(0)}} \psi_j^{(0)} + \dots \\ \text{where } H'_{ij} &\equiv \int \psi_i^{(0)} \mathcal{H}' \psi_j^{(0)} d\tau \end{split}$$

Read Handout: subgroups&perturbation_theory.pdf

Interpretation

$$E_i^{(1)} = H_{ii}' \equiv \int \psi_i^{(0)} \mathcal{H}' \psi_i^{(0)} d\tau$$

• The *first*-order corrections to the energies, $E_i^{(1)}$, are the expectation values of the perturbed part of the Hamiltonian, \mathcal{H} ', and the *zeroth*-order wavefunctions, $\psi_i^{(0)}$, i.e., calculate what the perturbation does to the energies of the initial wavefunctions without considering changes to the

$$\psi_i^{(1)} = \sum_{j \neq i} \frac{H'_{ij}}{E_i^{(0)} - E_j^{(0)}} \psi_j^{(0)}$$

• In the each of the 1st -order corrections to the wavefunctions, $\psi_i^{(1)}$, other wavefunctions, $\psi_j^{(0)}$ ($j=1,2,3,...\neq i$), are mixed into $\psi_i^{(0)}$ to the extent that \mathcal{H}' "couples" $\psi_i^{(0)}$ and $\psi_j^{(0)}$ together.

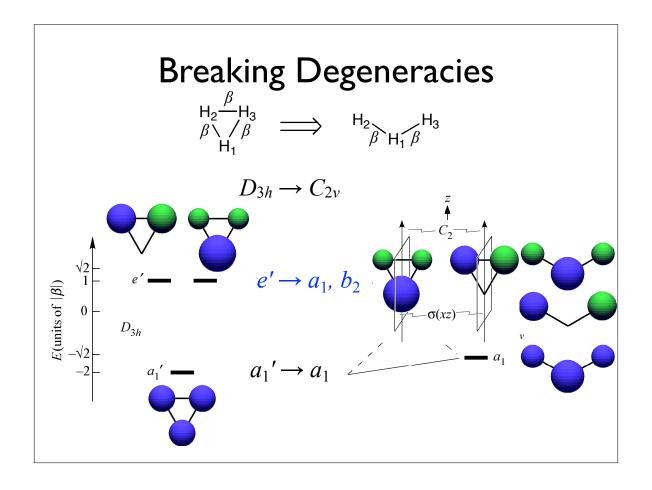
Interpretation

$$E_i^{(2)} = \sum_{j \neq i} \frac{\left| H'_{ij} \right|^2}{E_i^{(0)} - E_j^{(0)}}$$

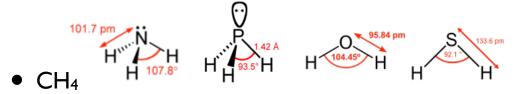
• The *second*-order corrections to the energies, $E_i^{(2)}$, reflect the energetic corrections due to the mixing we see in the first-order wavefunctions.

• Key symmetry implication:

Contributions to the 1^{st} -order corrections to the wavefunctions, $\psi_i^{(1)}$, 2^{nd} -order corrections to the energies, $E_i^{(2)}$, depend on the symmetry of the system *including* \mathcal{H}' . If the perturbed system *lowers* the symmetry, then \mathcal{H}' may mix $\psi_i^{(0)}$ and $\psi_j^{(0)}$ together if they belong to the same I.R. in the subgroup. If $\psi_i^{(0)}$ and $\psi_j^{(0)}$ still belong to different I.R.s in the lower symmetry subgroup, H_{ij}' will still be zero.



Basic Polyatomic Systems; Qualitative PMO Theory



- $CH_4(T_d) \rightarrow NH_3(C_{3v}) \leftarrow NH_3$ (planar, D_{3h})
- $OH_2(D_{\infty h}) \rightarrow OH_2(C_{2v})$
- $ML_6(O_h, \sigma \text{ only}) \rightarrow ML_4(D_{4h})$ (M = T. M.)
- $ML_6(O_h, \sigma \text{ only}) \rightarrow ML_6(O_h, \sigma + \pi)$

T_d and T

Angular Overlaps

Some Useful Overlap Integrals Between Central-Atom s, p, and d Orbitals and Ligand σ and π Orbitals^{a,b}

 $^a\pi_{\parallel}$ is a ligand π orbital with an axis lying in a plane containing the z-axis and the ligand; π_{\perp} is a ligand π orbital with an axis perpendicular to this plane.

b
For p_z , d_{z^2} , f_{xyz} , etc. we use z , z^2 , xyz , etc.

$$S(s,\sigma) = S_{\sigma}$$

$$S(s,\pi) = 0$$

$$S(z,\sigma) = HS_{\sigma}$$

$$S(z,\pi_{\parallel}) = IS_{\pi}$$

$$S(z,\pi_{\perp}) = 0$$

$$S(z^{2},\sigma) = \frac{1}{2}(3H^{2} - 1)S_{\sigma}$$

$$S(x^{2} - y^{2},\sigma) = \frac{\sqrt{3}}{2}(F^{2} - G^{2})S_{\sigma}$$

$$S(xy,\sigma) = \sqrt{3}FHS_{\sigma}$$

$$S(xz,\sigma) = \sqrt{3}FHS_{\sigma}$$

$$S(yz,\sigma) = \sqrt{3}HIS_{\pi}$$

$$S(z^{2},\pi_{\parallel})^{c} = \sqrt{3}HIS_{\pi}$$

$$S(z^{2},\pi_{\parallel}) = 0$$

$$S(x^{2} - y^{2},\pi_{\parallel}) = -HIS_{\pi}$$

$$S(x^{2} - y^{2},\pi_{\parallel}) = 0$$

$$S(xy,\pi_{\parallel}) = 0$$

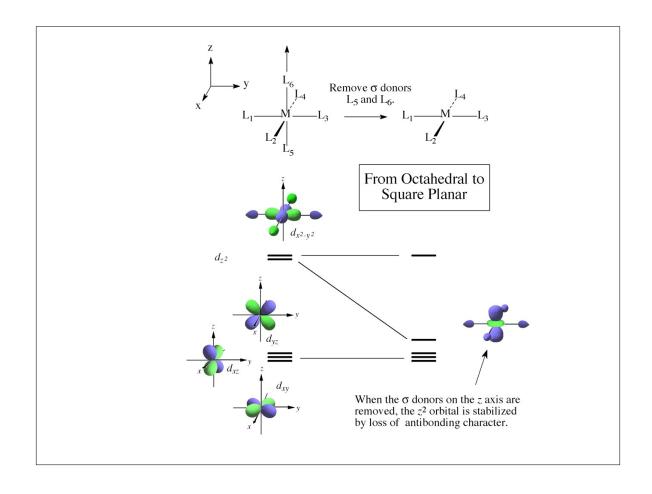
$$S(xy,\pi_{\parallel}) = 0$$

$$S(xy,\pi_{\parallel}) = 0$$

$$S(yz,\pi_{\parallel}) = 0$$

Subgroup Relationships

^cLigand lies in the xz plane. For more general cases, a more complete table is needed.



Background Topics - increasing Δ_o

• Spectrochemical Series:

NO⁺ > CO ≥ PF₃ ≥ CN⁻ > NO₂⁻ > en > NH₃ > NCS⁻ > H₂O > ox > OH⁻ > F⁻ > NO₃⁻ > Cl⁻ > SCN⁻ > S²⁻ > Br⁻ > I⁻ the series represents the confluence of several trends in electronegativity, decreasing/increasing σ -donation, and decreasing/increasing π -donation/acceptance.

• Metal trends:

$$Mn^{2+} < Ni^{2+} < Co^{2+} < Fe^{2+} < V^{2+} < Fe^{3+} < Cr^{3+} < V^{3+} < Co^{3+}$$

 $< Mn^{4+} < Rh^{3+} < Pd^{4+} < Ir^{3+} < Re^{4+} < Pt^{4+}$

Colors of Co(III) solutions

Solutions are ordered according to the ligand spectrochemical series: (a) CN⁻, (b) NO₂⁻, (c) phen, (d) en, (e) NH₃, (f) gly, (g) H₂O, (h) ox²⁻, (i) CO₃²⁻.