g [ransformation Matrices;

Geometric and Otherwise
 As examples, consider the transformation
matrices of the C;, group. The form of
these matrices depends on the basis we
choose. Examples:

+ Cartesian vectors: X, y, z

1 0
x=| 0 y=| 1
0 0

* p orbitals on the N atom of NH;
* the three 1s orbitals on the hydrogen atoms of NH,
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Three Is orbitals on the hydrogen atoms of NH;
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BN Transformation of d orbitals

d, (1=2,m=0) o 2 Bcos’6-1)

| E +ip see, e.g., Atkins & de Paula,
d, (I=2,m=%1) o< (F);/>sinOcosbfe” . )
} 2n Physical Chemistry
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BB Group Representations

*® Representation: A set of matrices that
“represent” the group. That is, they behave
in the same way as group elements when
products are taken.

* A representation is in correspondence with
the group multiplication table.

® Many representations are in general possible.

® The order (rank) of the matrices of a
representation can vary.




BN Example - show that the matrices
found earlier are a representation

eg., C.C; = {

1 0
(0,,)'C0,,=/0 0
0 1

BB Reducible and Irreducible Reps.

- If we have a set of matrices, {A, B, C, ...}, that
form a representation of a group and we can
find a transformation matrix, say Q, that
serves to “block factor” all the matrices of
this representation in the same block form
by similarity transformations, then {A, B,

C, ...} is a reducible representation. If no
such similarity transformation is possible
then {A, B, C, ...} is an irreducible

representation.
—_—




BB Similarity Transformation

maintains a Representation
Suppose the group multiplication rules are
such that AB=D, BC=F, etc ...

* Now perform similarity transforms using
the transformation matrix Q:

A’=Q1AQ, B"'=Q'BQ, C" = QICQ, etc.

* Multiplication rules preserved:
AB = (QAQ)(Q'BQ) = (Q"'DQ) = D’
B'C’ = (Q'BQ)(QICQ) = (Q'FQ) = F, etc.

BBl Reducing a Representation by
Similarity Transformations
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Example: Show that the
matrix at left, Q , can reduce
the matrices we found for the
representation given earlier.

BB “Blocks” of a Reduced Rep. are

also Representations

This must be true because any group
multiplication property is obeyed by the
subblocks. If, for example, AB = C, then
AB, =C,AB,=C, and A;B, =C,.
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BB A Block Factoring Example
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BN Significance of Transformations

* Irreducible Representations are of pivotal
importance

* Chosen properly, similarity transformations can
reduce a reducible representation into its
irreducible representations

* With the proper first choice of basis, the
transformation would not be necessary

* Important Future goal: finding the basis functions
for irreducible representations

BN Great Orthogonality Theorem
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2 Proofs: Eyring, H.; Walter, J.; Kimball, G.E. Quantum Chemistry; Wiley, 1944.
http://www.cmth.ph.ic.ac.uk/people/d.vvedenskyv/groups/Chapter4.pdf

I',(R) — matrix that represents the operation R in the i " representation.
Its form can depend on the basis for the representation.

[[',(R),]— matrix element in m™ row and n™ column of [',(R)

[. — the dimension of the i"™ representation

h — the order of the group (the number of operations)
51.]. =1 if i=j, 0 otherwise




B Great Orthogonality Theorem - again

* Vectors formed from matrix elements from the
mth rows and nt" columns of different irreducible
representations are orthogonal:

YAT(R),,IIT (R),, 1 =0ifi#
R

* Such vectors formed from different row-column
sets of the same irreducible representation are
orthogonal and have magnitude h/I. :

Z[l—‘l(R)mn][rz(R)m’l1’]>]< = (h/ll)émm'5nn’

R

B The First Sum Rule

The sum of the squares of the dimensions
of the irreducible representations of a
group is equal to the order of the group,
that is,

SNE=F+5+5+---=h

this is equivalent to:

Z[Zi(E)]z =h

1




B  Second Sum Rule

The sum of the squares of the characters in

any irreducible representation equals /4, the
order of the group Z[ )(l.(R)]2 = h
R

“Proof” — From the GOT:
2[1_‘1(R)mn][l_‘z(R)m’n']>l< = (h/lz)smm'ann’

R

let m=m'=n=n" ¥ [T;R), TR, 1 =(H/L)
R

BB Claracters of Different Irreducible
Representations are Orthogonal

The vectors whose components are the
characters of two different irreducible
representations are orthogonal, that is,

D x(R)x,(R)=0 when i # j
R




B Proof

Setting m = n in first GOT statement:

Y T(R),,I,R),,=0ifi#]
R

compare this to the statement (i # j):

gx,-(Rm(R): Z{;mnm}{;r,.(ze)m}}

R

= Z{Zri(R)mij(R)mm} =0

BB Matrices in the Same Class have
Equal Characters

* This statement is true whether the
representation is reducible or irreducible

* This follows from the fact that all
elements in the same class are conjugate
and conjugate matrices have equal
characters.




BB # of Classes = # of Irred. Reps.

The number of irreducible
representations of a group is equal to
the number of classes in the group.

Y xRy, (R)=hs,

if the number of elements in the m" class

is ¢, and there are k classes,
k

> x(R)x,(R)g, =hd,

p=1
—_—————eeeeme




