Cyclic Groups

Consider \(C_N \), the cyclic group consisting of the operations \(C_N, C_N^2, C_N^3, ..., C_N^{N-1}, C_N^N = E \). Because all the operations are in the different classes, there are \(N \) irreducible representations and they are all one dimensional. This means that the characters are the same as the matrices - just numbers.

Character Tables for Cyclic Groups

\[
\begin{array}{c|ccccccc}
\Gamma & C_N & C_N^2 & C_N^3 & \cdots & C_N^{N-1} & C_N^N = E \\
\hline
\Gamma_1 & \xi & \xi^2 & \xi^3 & \cdots & \xi^{N-1} & \xi^N \\
\Gamma_2 & \xi^2 & \xi^4 & \xi^6 & \cdots & \xi^{2N-2} & \xi^{2N} \\
\Gamma_3 & \xi^3 & \xi^6 & \xi^9 & \cdots & \xi^{3N-3} & \xi^{3N} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\Gamma_{N-1} & \xi^{N-1} & \xi^{2N-2} & \xi^{3N-3} & \cdots & \xi^{-2} & \xi^{N(N-1)} \\
\Gamma_N & \xi^N & \xi^{2N} & \xi^{3N} & \cdots & \xi^{-1} & \xi^{N^2} \\
\end{array}
\]

\(\xi = \exp(2\pi i / N) \)
Example

★ Use the C_6 group to find the characters of the reducible representation obtained using the 6 carbon $p\pi$ orbitals of benzene as a basis — then find the irreducible reps. spanned by this rep.

★ Draw the complex coefficients of the orbitals for each irreducible representation.

★ Draw real counterparts of these orbitals.

<table>
<thead>
<tr>
<th>C_6</th>
<th>E</th>
<th>C_6</th>
<th>C_6^2</th>
<th>C_6^3</th>
<th>C_6^4</th>
<th>C_6^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma^0 = \Gamma^6$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Γ^1</td>
<td>ϵ</td>
<td>ϵ^2</td>
<td>ϵ^3</td>
<td>ϵ^4</td>
<td>ϵ^5</td>
<td>ϵ^6</td>
</tr>
<tr>
<td>Γ^2</td>
<td>ϵ^3</td>
<td>ϵ^4</td>
<td>ϵ^6</td>
<td>ϵ^8</td>
<td>ϵ^{10}</td>
<td>ϵ^{12}</td>
</tr>
<tr>
<td>Γ^3</td>
<td>ϵ^4</td>
<td>ϵ^8</td>
<td>ϵ^{12}</td>
<td>ϵ^{16}</td>
<td>ϵ^{20}</td>
<td>ϵ^{24}</td>
</tr>
<tr>
<td>Γ^4</td>
<td>ϵ^5</td>
<td>ϵ^{10}</td>
<td>ϵ^{15}</td>
<td>ϵ^{20}</td>
<td>ϵ^{25}</td>
<td>ϵ^{30}</td>
</tr>
<tr>
<td>Γ^5</td>
<td>ϵ^6</td>
<td>ϵ^{12}</td>
<td>ϵ^{18}</td>
<td>ϵ^{24}</td>
<td>ϵ^{30}</td>
<td>ϵ^{36}</td>
</tr>
</tbody>
</table>

C_6 Group

$\epsilon = \exp(2\pi i / 6)$

<table>
<thead>
<tr>
<th>C_6</th>
<th>E</th>
<th>C_6</th>
<th>C_6^2</th>
<th>C_6^3</th>
<th>C_6^4</th>
<th>C_6^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma^0 = \Gamma^6$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Γ^1</td>
<td>ϵ</td>
<td>ϵ^2</td>
<td>ϵ^3</td>
<td>ϵ^4</td>
<td>ϵ^5</td>
<td>ϵ^6</td>
</tr>
<tr>
<td>Γ^2</td>
<td>ϵ^2</td>
<td>ϵ^4</td>
<td>ϵ^6</td>
<td>ϵ^8</td>
<td>ϵ^{10}</td>
<td>ϵ^{12}</td>
</tr>
<tr>
<td>Γ^3</td>
<td>ϵ^3</td>
<td>ϵ^6</td>
<td>ϵ^9</td>
<td>ϵ^{12}</td>
<td>ϵ^{15}</td>
<td>ϵ^{18}</td>
</tr>
<tr>
<td>Γ^4</td>
<td>ϵ^4</td>
<td>ϵ^8</td>
<td>ϵ^{12}</td>
<td>ϵ^{16}</td>
<td>ϵ^{20}</td>
<td>ϵ^{24}</td>
</tr>
<tr>
<td>Γ^5</td>
<td>ϵ^5</td>
<td>ϵ^{10}</td>
<td>ϵ^{15}</td>
<td>ϵ^{20}</td>
<td>ϵ^{25}</td>
<td>ϵ^{30}</td>
</tr>
</tbody>
</table>

Let ψ_1 be a basis function that belongs to Γ^1, then

$C_6\psi_1 = \epsilon \psi_1, \ C_6^2\psi_1 = \epsilon^2 \psi_1, \ldots, \ C_6^5\psi_1 = \epsilon^5 \psi_1$

Write ψ_1 as a combination of $p\pi$ basis functions,

$\psi_1 = \phi_1 + c_1 \phi_2 + c_2 \phi_3 + c_3 \phi_4 + c_4 \phi_5 + c_5 \phi_6$

$C_6\psi_1 = C_6\left(\phi_1 + c_1 \phi_2 + c_2 \phi_3 + c_3 \phi_4 + c_4 \phi_5 + c_5 \phi_6\right) = \epsilon \psi_1$

$\phi_1 + c_2 \phi_2 + c_3 \phi_3 + c_4 \phi_4 + c_5 \phi_5 + c_6 \phi_6 = \epsilon \psi_1$

$c_1 = 1 \Rightarrow c_2 = \epsilon^* = \epsilon^{-1}$

$c_2 = \epsilon^{-1} = c_1 \epsilon \Rightarrow c_3 = \epsilon^2$
Translation Group (1-dimension)

The one-dimensional translation group is just a particular cyclic group of order N. The trans-polyacetylene below is an example of a system with translational symmetry.

1-D Translation Group Char. Table

This has the same appearance as the C_N group’s character table:

$$
\begin{array}{cccccccc}
\Gamma^1 & t^1 & t^2 & t^3 & \ldots & t^{N-1} & t^N = E \\
\Gamma^2 & \varepsilon & \varepsilon^2 & \varepsilon^3 & \ldots & \varepsilon^{N-1} & \varepsilon^N \\
\Gamma^3 & \varepsilon^2 & \varepsilon^4 & \varepsilon^6 & \ldots & \varepsilon^{2N-2} & \varepsilon^{2N} \\
\Gamma^4 & \varepsilon^3 & \varepsilon^6 & \varepsilon^9 & \ldots & \varepsilon^{3N-3} & \varepsilon^{3N} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\Gamma^{N-1} & \varepsilon^{N-1} & \varepsilon^{2N-2} & \varepsilon^{3N-3} & \ldots & \varepsilon^{(N-1)^2} & \varepsilon^{N(N-1)} \\
\Gamma^N & \varepsilon^N & \varepsilon^{2N} & \varepsilon^{3N} & \ldots & \varepsilon^{N(N-1)} & \varepsilon^{2N} \\
\end{array}
$$

Character Table for T_N, rewritten

All the IRs of T_N have the form:

$$
\varepsilon = e^{2\pi i / N}
$$

$$
\begin{array}{cccccccc}
\Gamma^j & t^j & t^{2j} & t^{3j} & \ldots & t^{(N-1)j} & t^N = E \\
\Gamma^j & \varepsilon^j & \varepsilon^{2j} & \varepsilon^{3j} & \ldots & \varepsilon^{(N-1)j} & \varepsilon^N \\
\end{array}
$$

We make the substitution $k = \left(\frac{1}{a} \right) \times \left(\frac{j}{N} \right)$, where $-\frac{1}{2a} < k \leq \frac{1}{2a}$

Making the substitution, $\varepsilon^j = (e^{2\pi i / N})^j = e^{2\pi ik}$. This is rewritten to yield

$$
\begin{array}{ccccc}
\Gamma(k) & E & t & t^2 & t^3 & \ldots & t^{N-1} \\
\Gamma(k) & e^{2\pi i (k+u)} & e^{2\pi i (k+2u)} & e^{2\pi i (k+3u)} & \ldots & e^{2\pi i (k+Nu)} \\
\end{array}
$$
Examples

* Find the characters of the reducible representation obtained using the N hydrogen 1s orbitals of a hypothetical H-atom chain (with N atoms) as a basis — then find the irreducible reps. spanned by this rep.

* Follow the same procedure (i) using the longitudinal stretching vectors as a basis, (ii) using the transverse stretching vectors as a basis, (iii) using p_α orbitals as a basis.

$[\text{Pt(CN)}_4]^{-2+\chi}$

Chains in $\text{K}_2[\text{Pt(CN)}_4]$ and $\text{K}_2[\text{Pt(CN)}_4]\text{Br}_{3-5}3\text{H}_2\text{O}$

$[\text{Pt(CN)}_4]^2$: $d(\text{Pt-Pt}) = a = 3.48$ Å

$[\text{Pt(CN)}_4]^1.7$: $d(\text{Pt-Pt}) = a = 2.88$ Å

$\alpha_p - \alpha_d = 8|\beta| \quad \beta = -1$

$\beta_{pd} = \beta \quad \beta_{pp} = 2\beta \quad \beta_{dp} = 1.5\beta$

The tetracyanoplatinates crystallize such that square planar Pt(CN)$_4^{2-}$ species stack upon each other as indicated in the illustration below. (Steric factors cause the square planar ions to stack in a staggered fashion, but we’ll proceed as if the stacking is eclipsed, i.e., as if there is just one Pt(CN)$_4^{2-}$ ion per unit cell.) Pt-Pt distances are markedly shortened (from 3.48 Å to 2.88 Å) when the platinum is oxidized by reaction with Br$_2$ — that results in the intercalation of some additional bromide ions (Br$^-$) into voids between the chains in the solid state structure.
Consider only the largest Pt-Pt σ overlaps involving the $5d_z^2$ orbital (occupied for this d^8 complex) and the $6p_z$ orbital (a high-lying unoccupied orbital that is stabilized to some extent by overlap with the CN π^* orbitals).

Set up the 2×2 k-dependent Hückel-like secular equation and solve it to obtain analytical k-dependent expressions for each of the two band curves. Draw a one-dimensional band dispersion diagram that includes bands that derive from the $5d_z^2$ and the $6p_z$ orbitals. Use these parameters:

$$\alpha_p - \alpha_d = 8|\beta| \quad \beta = -1$$

$$\beta_{dd} = \beta \quad \beta_{pp} = 2\beta \quad \beta_{dp} = 1.5\beta$$

Mark the Fermi levels for both systems. Explain why the Pt-Pt distances shrink upon oxidation. Show the lowest energy allowed optical transitions for both systems.

$$\alpha_p - \alpha_d = 8|\beta| \quad \beta = -1$$

2-dimensional Layers

Bloch’s Theorem in 2– or 3–D

$$\varphi_k(r + R) = e^{2\pi i k \cdot R} \varphi_k(r) \quad R = ua + vb + wc \quad k = k_x a^* + k_y b^* + k_z c^*$$

- Orbitals and bands for a square net of Hydrogen atoms
- Orbitals and bands for graphite
Selection Rules for Crystals: Vertical Transitions

Intensity, \(I \propto \left| \int \psi_i^* \mathcal{H}'(t) \psi_f \, d\tau \right|^2 \)

where \(\mathcal{H}'(t) \) is the perturbation of the molecule (solid) caused by the electric field of the radiation, and the electromagnetic wave propagating in the \(z \)-direction

\[
\mathcal{H}'(t) = \frac{E_0}{2} \sum_s q_s X_s \left[e^{2\pi i (s-k_x + i\lambda_{\text{photon}}) x} + e^{-2\pi i (s-k_x + i\lambda_{\text{photon}}) x} \right]
\]

(See Eqs. 16 & 17 in Handout on "Transitions Between Stationary States")

\[
\psi_i \propto \psi_{\text{free}}(r) e^{2\pi i (s-k_x) x} \quad \text{Important terms to consider} \sim \int e^{i\omega \tau} e^{2\pi i (k_x-k_y) y} \, d\tau
\]

\[
\psi_f \propto \psi_{\text{free}}(r) e^{2\pi i (s-k_y) y} \quad I = 0 \quad \text{unless} \quad k_y = k_x, + k_{\text{photon}} = 0
\]

but \(|k_{\text{photon}}| \ll |k_x|, |k_y| \) (\(\lambda_{\text{photon}} \gg \lambda_t, \lambda_e \)), \(\therefore \) transition forbidden unless \(k_y = k_x = 0 \)

Allowed transitions are vertical, \(k_f = k_i \)

2-D Square H array - Band

2-D Graphite (Graphene) \(\pi \) Bands
PES Measurements of Graphite

Densities of States for 1D, 2-D, 3-D