Molecular Vibrations

Read:
e Cotton, Chemical Applications..., Chapter 10.

e Harris & Bertolucci, Symmetry and Spectroscopy...,
Chapter 3, pp. 93-117; 135-167; 170-201.

Diatomic Molecules

The harmonic oscillator Hamiltonian 1s

h d’ 1
———+V =E V(x)=—kx*
[ 5 (x)jqo ¢ (x) 5

x = distance from x,

(Hooke‘s Law: Force = F = — d‘;(x) = —kx)
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Diatomic Molecules

A

* The effective potential,
V(x), in which the nuclei1
move is determined by the
electronic energy &
nuclear-nuclear repulsion.

V(x)

 k, the force constant, 1s
linked to vibrational
Vix)=0

frequency, v = (/) (k /u)12 |

Real vs. Harmonic Potential

U@

Harmonic (quadratic)
potential is an
approximation of
the true ground I
state binding curve
for the diatomic
molecule.




Normal Coordinate for diatomics

The Hamiltonian is rewritten (change of
variables to mass weighted coordinate):
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Normal Coordinates

« Expressed in terms of normal coordinates,
the vibrational potential energy function is
diagonal (contains no cross terms):

3N—

1 6
U=U, +— Z 21,0,’
2 o

There are no terms involving Q.0

Normal Coordinates for Polyatomics

* For polyatomics, there exists a set of
normal coordinates in which the vibrational
Hamiltonian has a separable form

3N-6 hZ 82 1 5
Ho=; H o=l t-20
vib g k k 2 8Qk2 2 k=<k

Q, are mass-weighted coordinates

* Energies for each mode are given by:

E,=(n,+5)hv,




Normal Modes

The “normal modes” of vibration are
those which correspond to motions along
“normal coordinates”. Such normal
coordinates transform as irreducible
representations of the applicable point
group, but are generally combinations of
symmetry adapted internal coordinates. For

example, consider H,O. To what I.R.s do

the normal modes belong?

0
H/ \H 3N -6 =

9 - 6 =3 modes
(:2v

Determining Normal Mode Symmetries

 Find reducible rep. for all nuclear motions

Yo
YHI YH2
X
/ <o V
XH1 XH2
<H1 <H2

 Eliminate translations and rotations (6 for
nonlinear molecules, 5 for linear molecules).
This guarantees that normal modes involve
no net translation or rotation of center of
mass.




Normal Coordinates and Symmetry Coordinates

"1 20\ B, mode
3]
internal coordinates 3756 cm

/9\: m°dfi/e\/

3657 cm™' = v, 1595 cm™' = v,

mostly symmetric mostly H—-O-H
stretch bend

-1 -

Frequencies are for H»!90.
For D160, (v1, V2, v3) = (2669, 1178, 2788 cm!)

For the two A, modes of H,O, the potential
energy surface in terms of internal coordinates,

Q2 Gstretch 9 stretch & Qbend> and

—— normal coordinates,
——  — 1 0,& 0, (onlyA,

\ .
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.
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1-D Slices Through 2-D Potential Surface

A A

Energy
Energy

Harmonic Oscillator Wavefunctions

« For each mode, i, y; has the form

l//l(n) — Nie_(ai/z)Qian(\/;iQi); o, = 27[ni‘[1/h

Hy(x)=1; H(x)=2x; H,(x)=4x"-2;
H,(x)=8x"—12x; H,(x)=16x"—48x"+12

For even(odd) n, H (x) is an even(odd) function.

Hn(\/ZiQi)L+Hn(\/;iQi) for even n.
and H (\/ZI. Q,) transforms like Q. for odd n.




Fundamentals, Overtones, Combinations

A molecule may be excited with

multiple vibrational quanta. "‘-‘,‘ |
e.g., for H,O three numbers /\\/\\/\ . n;;th

specify the number of quanta in | |
each mode. """. /\ /\ n=3
e Fundamentals: 100 010 001 \/ \/ G

At At Be AVANVANENS
\ \/ [ e+ Oh,

e Overtones: 200 020 002 ~J .
Aq Aq A1 \/ .«""‘J‘ (1+ Y)hv,
e Combinations: 110 101 011 n=0

| / (Ko,
A1 B> B> \/

If two modes, i & j, form a basis for a degenerate
representation, then A; and A, are equal (i.e., the
modes have the same frequency). Then,

RQ, =aQ,+bQ, ; RO, = cQ,+dQ,

I'(R) :|: a cbl } is an orthogonal matrix
c

", a2+b2:cz+d2:a2+02=02+d2=1;
ac+bd =ab+ cd =0.

A A 07+ b0+ 2ab0.0.
sl alio - Ll )
<

_ 2, A2
- ;Li(Qi + Q/) 2(ab+ cd)Ql.Qj =0




The Result:

The total potential, U, is not changed under the
action of a symmetry operation

when o, = Ocj,

. .
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v 1s therefore unchanged in the ground state

(At the bottom p. 325 in Cotton, this 1s not at all
clear.)

» Conclusion: All molecules’ vibrational
wavefunctions belong to the totally
symmetric representation for the appropriate
point group when then molecule is 1n its
vibrational ground state (no excited modes).

* Fundamentals: One vibrational quantum is
created

v {iTvojvo

i#]

— symmetry of vibrational wavefunction
determined by the jt mode.




Example: CO stretching modes for
Cr(CO)s (Mn(CO)s", V(CO)s )

3C _
0, | E 8C, (:CZZ) 6C, 6C,1 i 8S, 30, 6S, 60,
4
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Cr(CO)s: 41 ~2100 em™!, 77, ~ 2000 cm™!, E, ~ 1985 ecm™!
Mn(CO)s : T, ~ 2100 cm™!, V(CO)s : Ty, ~ 1860 cm!
Question: What combination and overtone bands are possible?
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Infrared Spectroscopy

Consider Jgoj’.’”dc? (p]e.xcd T,

where d transforms as x,y, or z

This task is straightforward
(7

= evaluate I’ ® Fj =TI, (totally sym. IR)
y

Z
we know this occurs iff I‘x = Fj

y
Z

A Fundamental is infrared active when the
excited mode transforms as x, y, or z.

Raman Spectroscopy

* Inelastic scattering of photon (not a
resonant absorption spectroscopy)

Example (schematic) - a diatomic molecule in the gas phase

pure rotational
transitions

VCXC.
molecule gains An ' 0 molecule loses
one vibrational . one vibrational
quantum quantum
An =1 An = -1
..|||H|| ||H|||.. ..|||H|| | H|I|.. ..|||H|| ||H|||..
>
E

A

L'
L4

5 I ; ;
Stokes lines anti-Stokes lines




Chandrashekhara
Venkata RAMAN
1888-1970

C. V. Raman
Nobel Prize in Physics 1930

"for his work on the scattering of light and
for the discovery of the effect named after

him"

In 1922, Raman published "Molecular
Diffraction of Light", first of a series of
investigations with his collaborators
which ultimately led to his discovery, on
the Feb. 28th, 1928, of the radiation effect
which bears his name ("A new radiation",

Indian ]. Phys., 2

(1928) 387.)

(a)

Infrared (IR) and Raman Spectroscopy

Infrared spectra

originate in

the transitions hvg
between two

vibrational levels

in a single

electronic state.

~_nr}l

Rayleigh /— Raman spectra

originate in
/— Raman the electronic
polarization
caused by UV

or visible light.

(a) IR=

(b)

Infrared Spectrum

Absorption

j\ cm—1

Vibrational frequencies are observed
as absorption peaks in the IR region.

(d) Raman Spectrum

Rayleigh
1
P Raman
| jl\‘ cm™

Vo Vo — Voo

Vibrational frequencies are observed
as Raman shifts from the incident

frequency in the UV or visible region.

(c)

An Infrared Experiment

(e) A Raman Experiment

LUYA%'E,;S I_—_.[ SAMPLE ]

IR LIGHT
SOURCE

SAMPLE I
/ CUVETTE \‘Ds

Isc

DETECTOR
\ REFERENCE I/
CUVETTE
A=-log(Ds/ D)< dc

A comparative measurement
of transmitted light.

4
Isc =< Vsc Egc OVViS
PHOTON
COUNTER

Measurement
of scattered light at 90°.

IR-Raman
Comparison

absorption; Raman =
inelastic scattering

(b) IR spectrum shows

absorption peaks; in Raman
vibrational frequencies are
observed as shifts from the
incident frequency

(c) in IR an external reference is

used for comparison

(d) in Raman, an intense

Rayleigh (elastic scattering)
peak is observed with Raman
(inelastic) peaks displaced
from it - energy difference is
absorbed by the molecule

(e) The exciting radiation must

be monochromatic, the
signal is proportional to the
incident light intensity.




Polarizability Tensor

x,ind.

y,ind.

| z,ind.

/

Components
of the induced
dipole created
by E-field of

photon.

o o

XX Xy Xz
(04 (04

yx ooy oy
(04 o o

| X 7y 7z |

Molecular
polarizability
tensor.

N\

E-field of

scattering
photon.

Raman Spectroscopy

Became much more important after
development of lasers because only about
one thousandth of the scattered radiation is
Raman, the rest is scattered elastically (with
conservation of energy)

Selection rules — scattering amplitudes
involve the elements of the polarizability
tensor (which must be nonzero):

gnd exc
J Wio W, At

~T ®1"J. m,n=2x,y, orz

- 2 .2 2
1.€., Fj must transform as x“, y“,z",xy,xz, yz




Exclusion Rule

 If a molecule is centrosymmetric, then
allowed infrared transitions are forbidden in
the Raman spectrum and allowed Raman
transitions are forbidden in the IR. (Why?)

 If an inversion center is present, then x, y,
and z belong to u representations and o,

belong to g representations.

Exclusion Rule - Benzene

R
‘ ah
i
IR RY IR R|[]
UJ\

INTENSITY
X
)

i B i £ ' A 1 A
4000 3500 3000 2500 2000 1500 1000
cm™

Vibrational spectra of benzene reproduced from S.K. Freeman, Applications of Laser Raman
Spectroscopy, John Wiley & Sons, N.Y. 1974.




Examples

* Describe the number and character of the IR
and Raman transitions observed for BrF; if the

molecule has Dy, symmetry. C,, symmetry?

How can IR and Raman spectra allow one to

distinguish between syn- and anti-planar
structures of has N,F,?

For BF;, Raman and IR active modes. B-F

stretching modes can be observed in both the
IR and Raman spectra — which are affected by
the presence of two B isotopes (1°B and 'B)?

D, | E 2¢, 3C,10, 28, 30,

A1 1 11111 X +yz

A1 1 111 1 -1| R

B2 -1 012 o1 0 | ey [Pyt

/A 10 T T B R

L1 1 111 -1 1 z

E’|2 -1 0 i—z L0 | (R,R)| (xz,y2)

2
C, | E 2C, C(C% 20, 20,
4 11 1 1 1 1 z x2+ % 22
4,11 1 1 -1 -1 R,
2 2

B |1 -l 1 1 -1 X =y
B, |1 -l 1 -1 1 xy
E 2 0 -2 0 0 (xa y)’ (Rx’Ry) (xzsyz)




Example

The seven-coordinate complex Mo(CN)7 has been studied
both as solid KsMo(CN)7°2H>0 and in aqueous solution. In the
C—N stretching region the IR spectrum has bands at 2119,
2115, 2090, 2080, 2074, and 2059 cm! for the solid and at
2080 and 2040 cm! for solutions. How many Raman and
infrared bands would you expect for (a) the monocapped trigonal

prism and (b) the pentagonal bipyramid and how many

coincidences (bands present in both the IR and Raman spectra)
should there be for each geometry? How do you interpret these
data?

CoL, modes 1n [trans-CoCl,(en),]*

* To understand the electronic spectra of
transition metal complexes, it turns out that
the vibrational modes have to be considered.

« Electronic spectrum of [trans-CoCl,(en),]*

1s shown in Fig. 9.13 in Cotton

>

Determine the vibrational modes of the
[trans-CoCl,N,] grouping.




Vibrations of the trans-[CoCl.N4| group

* On p. 293 of Cotton’s text and on p. 343
of Harris & Bertolucci, the vibrational

modes are given as 2A1q, B1g, Bog, Eg,
ZAZMI Blu; 3Eu

This should be
2A1g, Blg, BZg, Eg, 2A2u, BZu, 3Eu

’ ” | .
D, | E 2C, C,(C}) 2C, 2C] | i 25, o, 20, 20,
4,11 1 1 11111 111 X472
¢ |
4, |1 1 1 -1 -111 1 1 -1 -1| R
|
B,|1 -1 1 1 -111 -1 1 1 - xt-y?
B, [1 -1 1 -1 141 -1 1 -1 1 Xy
E, {2 0 2 0 012 0 =2 0 0 [(R,R)| (xz)2)
I R T B B e T T N N
4, |1 1 1 -1 -1i-1 -1 -1 1 1 z
B, |1 -1 1 -1 i-1 1 -1 -1 1
B, |1 -1 1 -1 1 (-1 1 -1 1 -l
|
E |2 0 2 0 01!=2 0 2 0 0| (xy




Combination Bands —
Nondegenerate Modes

* When a molecule is vibrationally excited
with an odd number of quanta in more than
one nondegenerate mode, a simple direct
product is used to determine the symmetry
of the total vibrational state.

* H>O example: Recall,
Fundamentals: 100 010 001 Vi, V2 both Ay
A Al Bo V3 is B

Combinations: 110 101 011
A1 B> Bo

Overtones - Degenerate Modes;
Symmetric Direct Products

* With two quanta in a degenerate mode, the
symmetries of ., are given by*:

N 1
X (R)= {1 (R + 2(R)
* With three quanta the formula is

1 3 2 3
X (R=< (1 (R)+37(R)1(R)+21(R)

(*See Wilson, Decius, & Cross, “Molecular Vibrations...”,
Section 7.3. Also see the Antisymmetry handout for proof
for the two and three quanta cases. Note: Carter does
overtones wrong for CH4 on p. 194.)




Fundamentals and Quvertones and
Combination bands for XY,
molecules

_ On p. 194 of Carter, overtones of CHy
are treated incorrectly. Cotton leaves
out their treatment entirely.

_ Let's work out the normal modes, look
at the fundamentals - then discuss how
the overtone and combination bands
are handled differently

T,|E 8C, 3C, 6S, 60,

A1 1 1 1 1 Pyt
A1 1 1 -1

El2 -1 2 0 0 2z —x* = y* x* —y?)
T, |3 -1 1 —1 |(R,R,R)

T, |3 -1 -1 1 (x, v, 2) (xy,xz,yz)
%/ME vo(E) //"3E;)\ vy(To)

Tetrahedral XY, molecules.




Fermi Resonance

« Just as “configuration interaction” occurs in
electronic spectra, mixing between
fundamentals and combination or overtone
bands can occur in vibrational spectra.

» ‘Weak’ combination/overtone bands can
‘borrow’ intensity from fundamentals if the
sum of the frequencies in the combination/
overtone band is close to the frequency of the
fundamental.

* CO; example from Cotton: fundamental
frequencies are 668, 1337 (Raman), 2349 cm™!
(what are they?). 200 mixes with 010.

Example: C-H region of benzene

http://home.arcor.de/rothw/gauss/varsanvi/molekuele/Bz/

-
a i H
¥ w” 5

<
A R
T Aig T "
see Wilson, Decius, and Cross
| ! H

N
R
J
~H H” e
<
A R Ho
\ u H

By
CsHe: three IR bands at 3045, 3073, 3099 cm~!; C¢De: one IR band at 2293 cm-!

> | Raman

Ezg

-

.
7 | IR
_J

E4




Normal Modes and Vibrational
Frequencies for CO2

O=—C=—/=0 J— z

y

R T e

IT, %" >t
667 cm™! 1337 cm™! 2350 cmj
\

Fundamentals

Observed Raman bands: 1278 and 1385 cm™!

Vibrational Spectra for CO»

8 199w
R O
£ ool £ 8 co,
2 01 32 gas phase CO, berfd
8 40 - Combination band: < 2
- CO, i.ph. str. + CO, o. ph. str. ©
X
e 20 4 2 \g
N

o204 r 3 <\ Féfﬁi Ares.o.nz;lﬁceldlo't.uﬁlet':A ;
2 CO; 0. ph. str. 2| €O, i. ph. str. + CO, bend overtone
2 0.15- o
= S 2 X 669 = 1338
= 0.101 T
© 1385 + 1278 = 1331
E 0.05 2
14

0.00- v

3500 3000 2500 2000 1800 1600 1400 1200 1000 800 600

Wavenumbers (cm-1)

Observed Raman bands: 1278 and 1385 cm-!
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FIG. 6.1, Observed and theoretical spectra for clear skics over the Gulf of Mexico, April 23, 1969. The observed
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Planck’s Blackbody Radiation Law

Vi ] hv=2821ksT = peak is
| at 557 cm™! at T= 285K

S0+

-10+

‘00
e
=

<

3.0




TABLE 4.1 Selected Groups that Display Fermi Resonance Bands in their Vibrational Spectrum.
Active
Group Bands (cm ™) Assignment IR Raman
CO, 1385, 1278 CO; i. ph. str + 2x CO, bend No Yes
R—-C(=0)—-H ~2820, ~2710 CH str. + 2x CH i.ph. bend Yes Yes
N=C=0 ~1300, ~1200 NCO i.ph. str. + 2x NCO bend Yes Yes
R—COOH ~3000—-2650 OH str. + 2x OH i. pl bend Yes Yes
~3000-2550 OH str. + 2x C-O str. Yes Yes
CHa ~2920-2890 CH; str. + 2 x CH> bend Yes Yes
Aryl-C(=0)—-Cl ~1780, ~1730 C=O0 str. + 2x 880 aryl-C str. Yes Yes
N=C—N=C(NH,), 2200, 2170 C=N str. + (1250 4925 cm™) Yes -
Combination band
R-C=C-R 2300, 2235 C=Cstr + C—C=C bend No Yes
C=0 1810, 1780 C=0 str. + 2x ~900 ring bend Yes —
Aryl-NH, 3355, 3205 NH, i. ph. str. 4+ 2x NH, bend Yes Yes
NH,Cl 2825 NHj i. ph. str. + 2x NH, bend Yes Yes
— C(=0)-NH-C 3300 (s), 3100(m) MH str. + 2x CNH str.-bend Yes Yes
D, |E 2c° oo | i 28° wC,
|1 1 111 1 T | x%, )%,z
1 R S |
M, | 2 2cos® 0 2 2cos® - 0 R (xz,yz)
A, | 2 2cos2® 1 2 2c082® -+ 0 (R.R) (x* =%, xp)
AL L A, : _';___'_'_'__E___'_______; _____________________________________
Z: 1 1 -1 i -1 -1 1 z
o1 A -1 - 1 1
I, | 2 2cos® 0 i -2 2cos® 0 (x,y)
A, | 2 2co82® -+ 0 i -2 —2cos2® 0
: i

g(;/(cq’) + )((CN’)) - %(40052 D+ 2cos2c1>) = (1408 2®) + 05 2B = 1+ 2c0s 2D

(I, ®IT 1

1+ i
3 2cos2® 1!

2cos2®

1+

a1 ‘:>Y+A
g g




