
Reciprocal Space and Brillouin Zones in Two and Three Dimensions 

As briefly stated at the end of the first section, Bloch’s theorem has the following 

form in two and three dimensions: 
 

k (r +R) = e
2 ikR

k(r) . 
 

In this expression, R is a lattice vector between a pair of unit cells: R = ua + vb + wc ; 

u, v,  and w  are integers and the dot product k R = kau + kbv + kcw .  (In two dimensions,  

R = ua + vb  and k R = kau + kbv .)  At this point, we need to clarify the meaning of the 

vector k and find a way to define the two- and three-dimensional Brillouin zones.  To do 

this, let’s consider the general, oblique, two dimensional lattice below.  For this lattice,  

 
 

the basis vectors, a and b, are not orthogonal and there is no symmetry relationship 

between their lengths.  An operation that translates by the lattice vector R (which we may 

call tR ) involves independent  and commutative translation operations in the a and b 

directions.  By an extension of the reasoning used for the one-dimensional translation 

group, we can deduce that if we operate on a basis function that belongs to the irreducible 

representation labeled by k, we should obtain the following: 
 



tR (k) = tvbtua (k) = tuatvb (k) = e2 i kaue2 i kbv (k)  where R = ua + vb . 
 

The form tR (k) = e2 ik R (k)  makes sense if we define k-space (often called 

reciprocal space) basis vectors, a* and b*,  such that  
 

k R = (kaa + kbb ) (ua + vb) = kau + kbv  for all u,  v,  ka ,  kb . 
 

This is possible if we demand that a*  b, b*  a and set the magnitudes of a* and b* so 

that a a = b b = 1 .  In three dimensions, the required properties are analogous: a*  

b,c; b*  a,c; c*  a,b; a* • a = b* • b = c* • c = 1. These are embodied in the definitions  
 

a =
b c

a (b c)
; b =

c a
a (b c)

; c =
a b

a (b c)
 

 

where we note that a • (b  c) = b • (c  a) = c • (a  b) = V, the volume of the unit cell.  

The reader should be aware that our definition of the reciprocal space basis vectors (a*, 

b*, and c*) differs from that used by most solid state physicists by a factor of 2 , but our 

statement of Bloch’s theorem is equivalent because we include a factor of 2  in the 

argument of the complex exponential function.  The reciprocal space definition used here 

coincides with that commonly used by crystallographers.   

The vectors a*, b*, and c* can be used to build up an entire lattice of points 

{Khkl } defined such that Khkl = ha + kb + lc , where h,  k,  and l  are integers.  Each of 

the vectors in the set, {Khkl }, are called reciprocal lattice vectors (RLVs).  We show a 

reciprocal lattice that corresponds to the two-dimensional oblique lattice in Fig. ?.  The 

concept of the reciprocal lattice is of great importance in the theory of diffraction, where 

the integers h,  k,  and l  are known as Miller indices.  Let’s focus on the properties of the 

factor e2 i(k R)  that appears in Bloch’s theorem.  If we have two k vectors (k1 and k2) 

which differ by a RLV Khkl , i.e., k1 = k2 +Khkl  where Khkl = ha + kb + lc .  Then 

e2 i(k1R) = exp{2 i(k2 + Khkl ) R} = exp{2 i(k2 R)}exp{2 i(Khkl R)}= e
2 i(k2 R)  

since Khkl R = hu + kv + lw =  integer .  We conclude that k1 and k2 are equivalent 



RLVs.  Any basis function that transforms according to the irreducible representation 

labeled by k2 belongs to the equivalent irreducible representation labeled by k1.  More 

succinctly, k1 and k2 are redundant labels for the same irreducible representation.  In our 

“listing” of the representations of the one-dimensional translation group, we found that 

any representation outside of the range -1 2a < k 1 2a  is redundant.  Similarly, in three 

dimensions any two k-points that are connected by a reciprocal lattice vector are 

redundant.  (The same terminology could be used for the one-dimensional case if we 

define a set of one dimensional reciprocal lattice vectors with magnitudes 

  
,  2 a ,  1 a ,  0, 1 a ,  2 a ,  .)   

There is a geometric construction that allows us to choose a set of k-points that 

ranges over all necessary values to account for each irreducible representation of 

translational group once and only once.  We do this by constructing a region in reciprocal 

space that surrounds k = 0 such that all k-points enclosed are closer to k = 0 than to any 

other reciprocal lattice point.  As is geometrically evident, this is the region enclosed by 

the sets of planes that are perpendicular bisectors to the lattice vectors connecting the 

origin in k-space to its nearest neighbor reciprocal lattice points.  The region so obtained 

is the first Brillouin zone.  The BZ for the 

oblique two-dimensional case is illustrated 

below, the reciprocal lattice vectors that are 

illustrated show how this region does not enclose 

any redundant k-points.  Note that any point in an 

outlying region of k-space is exactly equivalent 

with one within the BZ. 
 

Brillouin zones for the remaining two-dimensional lattices can be easily 

constructed by following the same geometrical prescription we have given above.  Let’s 

examine the two-dimensional hexagonal lattice.  The two lattice vectors a and b  are 



equal in length and separated by a 120˚  angle.  The reciprocal lattice basis vectors 

a  and b are respectively perpendicular to a and b , and therefore make a 60˚ angle to 

each other.  Note that the reciprocal lattice points generated by these basis vectors is also 

hexagonal, but appears to be rotated by 30˚ when compared with the direct lattice.  The 

first Brillouin zone is just the hexagon obtained by following the geometrical prescription 

given above. 

The two-dimensional square lattice is even simpler.  The two lattice vectors 

a and b  are equal in length and separated by a 90˚  angle.  The reciprocal lattice basis 

vectors a* and b* are respectively perpendicular to a and b , and obviously make a 90˚ 

angle to each other.  The reciprocal lattice points generated by these basis vectors is also 

square and is in alignment with the direct lattice, the first Brillouin zone is just a square. 

When considering these two examples, bear in mind the fact that while the relative 

orientation of the direct and reciprocal lattices are intimately fixed, the reciprocal lattice 

does not describe a physical object.  Rather, it is an indispensable geometrical construct 

for dealing with problems in the theory of diffraction, electronic structure or vibrational 

structure of solids and surfaces.  One may think of it as playing a role similar to the role 

played by the “complex plane” in manipulating complex numbers — the manipulations 

can be done algebraically (or trigonometrically), but the complex plane is such a useful 



graphical tool for clarifying the computations it is now virtually inseparable from the 

field of complex analysis.  Those newly initiated to reciprocal space often find it to be a 

bit mysterious and forbidding, but the price paid for becoming comfortable with 

reciprocal space is well worth it — and any serious work in crystallography, solid state 

physics or solid state chemistry requires that the price be paid. 

Let’s see how energy bands are handled in two dimensional systems.  For 

simplicity we will first consider a hypothetical square layer of hydrogen atoms for which 

have but one hydrogen per unit cell.  We are thus considering the single band that is built 

up from the hydrogen 1s orbitals.  For each k point  within the BZ, we have just one 

Bloch basis orbital: 

(k) = 1
N

e2 ik R (R)
R

. 

where the sum over R  runs over every unit cell 

in the plane and (R)  symbolizes the H-atom 1s 

orbital residing in the unit cell at lattice site R.  

Since there is only one Bloch basis orbital for 

this problem, the secular determinant for this 

problem is trivial, but we still must evaluate 

H(k) : 

  

H(k) = e2 ik R

R

HR;    where HR
= (0) H (R)

The diagram here shows the set of coefficients 

for the factor e2 ik R  in this equation (the 

components of k,  ka and kb ,  fall in the range 

1 2a < ka,  kb 1 2a).  If the nearest neighbor interaction is ,  then 

H(k) = (e2 ikaa + e 2 ik aa + e2 ik bb + e 2 ikbb ) = 2 {cos(2 kaa) + cos(2 kbb)} 



The band energy is just equal to 

H(k),  E = 2 {cos(2 kaa) + cos(2 kbb)}  

which is plotted in Figure 8.  We show an 

energy surface that describes the k-

dependence of the crystal orbital energy.  

There is one electron in this system for 

every hydrogen atom and thus N electrons 

fill N/2 crystal orbitals.  Since there are N 

crystal orbitals corresponding to the N irreducible representations within the first BZ, the 

energy band is exactly half occupied.  The Fermi level is that energy below which fall 

exactly N/2 crystal orbitals.  The Fermi surface (just a curve for this two-dimensional 

example) is that part of the energy band surface that intersects the Fermi energy.  In this 

2-D case, the Fermi “surface” is just a square that surrounds the k = 0 (  point) in the BZ. 

Now let’s conclude this section with an 

interesting “real” example, the -electron band 

structure of graphite.  Graphite is a quasi-2-

dimensional solid, with honeycomb sp2-carbon 

nets that are layered upon one another with 

separations of 3.35 Å (Figure 9).  The -

electronic structure is very strongly controlled by 

hexagonal translational symmetry of the 2-

dimensional graphene sheets.  The conducting 

properties of graphite and graphite compounds Figure 9. 3-dimensional structure of graphite. 



are determined by the -bands we shall now describe.  The -electronic structure of 

graphite is jumping-off point used to describe single-walled carbon nanotubes (SWNTs) 

that are the subject of much current attention.  SWNTs are essentially just slices of 

graphite "chicken-wire" that are rolled-up and stitched together to preserve the local 

carbon six-membered ring structure of graphite. 

We will treat a 2-dimensional -bonded network — a single layer of graphite.  

For this problem, there are once again two atoms per unit cell and we will in general have 

to solve a 2 2  Hückel secular determinant.   

For each atom in a neighbor cell that is linked to an atom in the origin unit cell, 

we have shown the phases of the p  orbitals for atoms in cells adjacent to the origin cell 

for any given k-point (k = kaa* + kbb*).  Using this information, it is a simple matter to 

write down expressions for the matrix elements 

that appear in the k dependent secular 

determinant for the graphite p  bands: 

H11(k) = H22(k) = 0  

H12(k) = (1+ e 2 ik aa + e2 ik bb )  

Using these matrix elements, we set up and solve the secular equation for any k value: 

 

H11(k) E H12(k)

H21(k ) H22(k) E
=

0 E (1+ e 2 ika a + e2 ik bb )

(1 + e2 ik aa + e 2 ik bb ) 0 E
= 0

or    E = ± 3 + 2cos(2 kaa) + 2cos(2 kbb) + 2cos[2 (kaa + kbb)]

 

This energy expression has a minimum (E = -3| |) for the bonding band and a maximum 

(E = 3| |) for the antibonding bands at k = 0.  The two bands "touch" at two unique k 

values, (ka, kb) = (1/3a,1/3a) and (-1/3a, -1/3a), which are respectively denoted as K and K´ 

and reside at the corners of the BZ.  The energy bands form surfaces in which the orbital 

energies can be graphed as a function of k throughout the Brillouin zone, this shown in 

two ways below. 



First we show the two surfaces, the nodal characteristics of the  orbitals at the 

high symmetry points, , M, and K.  The reader should be able to see by inspection that 

the bonding/antibonding character in the crystal orbitals rationalizes their energy 

ordering.  Since there are two carbon atoms per unit cell, there are two electrons to be 

accommodated and the bottom band is therefore entirely filled while the top band is 

entirely empty.  The Fermi level lies at E = 0 and bisects the two bands, running through 

just the points K and K´. 

Alternatively, one can look at a diagram of energy contours for the lower  band 

(the upper band is its "mirror image" with respect to energy.  The contours represent 

"cuts" made by slicing through the previously illustrated surfaces with planes at constant 

energies.  The periodicity of the bands throughout k-space should be evident and is, of 

course, just another illustration of the essential redundancy of any representations of the 

Figure 10. -bands for a single 
graphite sheet, with orbitals shown 
at high-symmetry k-points. 



translational group once one moves 

beyond the first BZ.  The contour 

diagram shows clearly that the point M 

is a saddle point on this 2-dimensional 

surface and as such is a point where the 

density of states has a singularity 

(referred to as a Van Hove singularity). 

The detailed information 

provided by these depictions of energy 

surfaces are not usually available, and 

of course are not possible for three-

dimensional crystals where k-space is 

three-dimensional as well.  Instead, the k-dependence of the energy bands is indicated by 

plotting band energies along lines that connect high-symmetry points.  The k-dependence 

can be ignored altogether by simply plotting the density of states, in which the number of 

band orbitals is displayed as a function of energy — as shown for the graphite  bands 

here. 

The detailed features of the density-of-states (DOS) function can be understood 

most clearly by examination of the band surface picture or the contour plot.  We have 

Figure 11.  Contours for the lower -band for a 
single graphite sheet. 

Figure 12. “Spaghetti” 
diagram for the -bands 
of a single graphite sheet, 
plus the  density of 
states. 



already indicated that the van Hove singularities at E = ±  are associated with the saddle 

points on the band surfaces.  The DOS at a given energy is proportional to the area of the 

surface obtained by cutting a slice through the surface of thickness dE at E.  The 

contribution to the DOS at a given point on the surface is inversely proportional to the 

gradient at the point, so to get the DOS one needs to integrate over the line over all points 

at that energy.  For our graphite example, that would in principle mean that we would 

perform a line-integral over an individual contour line in Figure 11:   

DOS =
dS

f
E

 

where f is the energy band function.  (In 3-dimensions, this becomes an integral over the 

surface at energy E.)  The van Hove singularities are a consequence of the vanishing of 

the gradient of the energy surface at the saddle points.  There are no singularities due to 

the band maximum (minimum) because the length of the energy contours vanishes at the 

same rate as the gradient vanishes as one approaches the maximum (minimum) from 

below (above).  The DOS for graphite goes to zero at the Fermi level because the energy 

contours contract to the single points (K and K´) where the  and * bands touch. 

In “real-life” cases, energy dispersions curves and DOS diagrams are not obtained 

by solving the band energies in closed form.  Rather, DOS functions are obtained by 

performing calculations on a computer using a grid of k-points that is evenly spread over 

the BZ.  The discrete distribution of energy levels so obtained is an approximation of the 

true continuous DOS.  The quality of the computed approximate DOS depends on the 

fineness of the k-point grid and unless the grid is very fine, features such as singularities 

are rounded off. 

 

 


