
Survival Facts from Quantum Mechanics 
 
 

Operators, Eigenvalues and Eigenfunctions 
 
An operator O may be thought as “something” that operates on a function to produce 
another function: 

O f(x) = g(x)  

In most cases, the operators of quantum mechanics are linear.  Operators are linear if 
they have properties:  

O[f(x) + g(x)] =O f(x) +Og(x)  

Oc f(x) = cOf(x)  

where c is a constant (c can be a complex number: c = a + ib, i = √–
–
1
–
) 

Examples: 

linear operators: 

x (multiplication by x):  

x[f(x) + g(x)] = x f(x) + xg(x)  

d

dx
  (differentiation with respect to x): 

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x)  

A nonlinear operator:       (square root operator): 

f(x) + g(x) ! f(x) + g(x)  

The eigenvalues and eigenfunctions of an operator A are those numbers aj and functions 
! j  which satisfy 

A! j = aj! j  

where j  is just a label for the various eigenfunctions and corresponding eigenvalues 
which satisfy this equation.  In other words, when A  operates on one of its 
eigenfunctions, say !3 , the result is a3!3  - just !3  back again, multiplied by the 
eigenvalue a3 .



 Note that if we multiply an eigenfunction of a linear operator by a constant c  we 
still have an eigenfunction: 

if  A! j = aj! j  

then  A(c! j ) = cA! j = c(aj! j ) = aj (c! j )  
so that an eigenfunction ! j  and the function ! j = c" j  are not considered as independent 
eigenfunctions. (i.e., Since any eigenfunction is still an eigenfunction when multiplied by 
a constant, eigenfunctions which differ only by a multiplicative constant are not 
considered to be “distinct”.) 

Examples: 

(1) The operator 
d

dx
 has an eigenfunctions ekx  with eigenvalues k : 

d

dx
e
kx

= ke
x  

where k  may take on any value. 

(2) The operator x
d

dx

! 
" 
# 

$ 
% 
& 

 also has an infinite set of eigenfunctions 

 
x
n; n = 1,2,…!, n may be nonintegral{ } : 

x
d

dx

! 
" 
# 

$ 
% 
& 
x
n

= x(nx
n'1
) = nx

n   

This example allows us to demonstrate that a linear combination of eigenfunctions is not 
an eigenfunction (unless the two eigenfunctions have the same eigenvalue).  For example, 
there is no number c which satisfies the equation:  

x
d

dx

!
"
#

$
%
&
x
2
+ x

3'( )* = c x
2
+ x

3'( )*  

(3) The operator d
2

dx
2

! 

" 
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$ 
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 has a set eigenfunctions of the form 

coskx; k =  real number{ }  and !k2  is the eigenvalue: 

d
2

dx
2
[coskx] =

d

dx
[!k sin kx] = !k

2
[coskx]  

Note that the set of functions sin kx; k =  any real number{ }  are also eigenfunctions with 
the same eigenvalue: 

d
2

dx
2

!
"
#

$
%
&
[sin kx] =

d

dx
[k coskx] = 'k2[sin kx]  



Therefore, for any given value of k,  coskx ,  and sinkx  are eigenfunctions of d
2

dx
2

! 

" 

# 

$ 

% 

& 

 with 

the same eigenvalue !k2 .  This means that any combination of cos kx and sin kx  is also 
an eigenfunction 

d
2

dx
2

!
"
#

$
%
&
[acoskx + bsin kx] = 'k2[acoskx + bsin kx]  

In particular, if a = 1 and b = i = !1  we have  

d
2

dx
2

!
"
#

$
%
&
[coskx + i sin kx] =

d
2

dx
2

!
"
#

$
%
&
[e

ikx
] = 'k2[eikx ]  

so that e
ikx; k = any real number{ }  is an alternative set of eigenfunctions of d

2

dx
2

!
"
#

$
%
&

.   

Commutators 

 The commutator of two operators A and B is defined as  

A,B[ ] =AB ! BA  

if A,B[ ] = 0 , then A and B are said to commute.  In general, quantum mechanical 
operators can not be assumed to commute. 

Examples: 

When evaluating the commutator for two operators, it useful to keep track of things by 
operating the commutator on an arbitrary function, f(x) . 

(1) evaluate x,
d

dx

!

"#
$

%&
: 

x,
d

dx

!
"#

$
%&
f(x) = x

d

dx
'
d

dx
x

(
)*

+
,-
f(x)  

 = x
d f(x)

dx
!
d

dx
x f(x)( ) = x

d f(x)

dx
! x

d f(x)

dx
! f(x)

d

dx
x = ! f(x)  

 x,
d

dx

!

"#
$

%&
f(x) = ' f(x)   (    x,

d

dx

!

"#
$

%&
= '1  

We see that the effect of operating on any arbitrary f(x)  with x,
d

dx

!

"#
$

%&
 is to produce 

! f(x) , so that the last equation is generally true. 



(2) In quantum mechanics, the operator for linear momentum in the x direction is 

 

p̂x =
!

i

d

dx
 (where 

 
! = h 2! ).  Let's evaluate x, p̂x[ ] :  

 

x, p̂x[ ] = xp̂x ! p̂xx =
!

i
x
d

dx
!
d

dx
x

"
#$

%
&'

=
!

i
x,
d

dx

(
)*

+
,-
= !
!

i
= i!  

 

(3) In classical mechanics, the angular momentum of a particle around the origin is a 
vector quantity, L, which is defined as L = r × p, 

L =

x̂ ŷ ẑ

x y z

p
x

p
y

p
z

= (yp
z
! zp

y
)x̂ + (zp

x
! xp

z
)ŷ + (xp

y
! yp

x
)ẑ

so, identifying the components of L, 

L
x
= yp

z
! zp

y
   ;    L

y
= zp

x
! xp

z
   ;    L

z
= xp

y
! yp

x
 

which are the components of a single particle’s angular momentum.  To get the quantum 
mechanical operators for L, we insert the quantum mechanical operators for the linear 
momenta to obtain: 

 

L̂
x
=
!

i
y
!
!z

" z
!
!y

#
$%

&
'(

   ;    L̂
y
=
!

i
z
!
!x

" x
!
!z

#
$%

&
'(

   ;    L̂
z
=
!

i
x
!
!y

" y
!
!x

#
$%

&
'(   

The reader should use these expressions to operate on an arbitrary function f(x, y, z) to 
evaluate the commutators 

 
[L̂

x
, L̂

y
] = i!L̂

z
   ;    [L̂

y
, L̂

z
] = i!L̂

x
   ;    [L̂

z
, L̂

x
] = i!L̂

y

 

 
Quantum Mechanical Operators and Wavefunctions 

If !  is to be considered a "well behaved" function, then we demand that it have the 
following properties: 

 (a) !  must be continuous (no "breaks") 

 (b) !  must have continuous derivatives (no "kinks") 

 (c) !  must be normalizable.  To be normalizable, !  must obey the condition (the 
symbol d!  symbolizes integration over all space):  

!"! d# $ = C, where C  is a finite constant.  



Then we can normalize !  if we multiply by 1
C

: 

 !"

C

#
$%

&
'(

!
C

#
$

&
' d)* = 1 . 

 
 Of central importance is the time-independent Schrödinger equation 

 H  ! = E!.  

where  H  is the Hamiltonian (or energy) operator for the system. Ψ is called the 
wavefunction or state function for the system and must be "well behaved" in the sense 
indicated above.  In quantum mechanics, physically observable quantities are associated 
with Hermitian operators (eg., the energy of the system, the momentum of the system or 
of particles within the system, the position of particles in the system, etc.)  If an operator 
A  is Hermitian it has the property 

!"
A#d$ % = #(A! )" d$ % ,  

for all well behaved functions ! and " .   

If a system is in a state described by ! , then the expectation value we would 
observe for the property associated with the Hermitian operator A  is given by  

A = !"
A!d# $ ,  

if it is a physically observable quantity, it must real: 

A
!
= A  so "!

A"d# $ = "(A")
!
d# $ . 

Thus, the Hermitian property of operators associated with observables guarantees that 
calculated quantities for these observables will be real. 

Example: Is p̂
x
 Hermitian? 

 
   

!"

#$

$

% p̂
x
!dx = !"

#$

$

%
!

i

d

dx
!

&
'(

)
*+

dx =
!

i
!"

#$

$

%
d

dx
!

&
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)
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dx =

(Integrate by parts, udv

#$

$

% = uv
#$

$
# vdu

#$

$

% )

=
!

i
!!"

#$

$

#
!

i
!

#$

$

%
d

dx
!"&

'(
)
*+

dx = !
#$

$

%
!

i

d

dx
!

&
'(

)
*+

"

dx = !( p̂
x
!)"

#$

$

% dx    

note that if p̂
x
 didn't have the factor of i in front, it wouldn't be Hermitian. 



Orthogonality (Definition): 

 two functions ! and "  are said to be orthogonal if  

!"#d$ % = 0  

Important property of Hermitian Operators: Eigenfunctions of a Hermitian operator are 
orthogonal.  (In the case where two or more eigenfunctions have the same eigenvalue, 
then the eigenfunctions can be made to be orthogonal). 

 proof: suppose !i and ! j  are eigenfunctions of A  with respective eigenvalues 
ai  and aj  such that ai ! aj . 

A! i = ai!i  

A! j = aj! j  

By use of the Hermitian property we get: 

!i
"
A! j d# $ = ! j (A!i )

"
d# $,  

now operate with A  on both sides of the equation: 

 aj !
i

"!
j
d# $ = a

i

" !
j
!
i

"
d# $ .  

ai  is real because A  is Hermitian.  Then we have 

(a
i
! a

j
) "

j
"
i

#
d$ % = 0.  

! " j"i
#

d$ % = 0.  

Now, if ai = aj , then we are free to combine !i and ! j  and we will still have an 

eigenfunction (see the example concerning 
d
2

dx
2

 above).  For example, suppose 

!1 and !2  both have eigenvalue a  with respect to operator A .  Then we can take 

!1 = "1 and !2 = "2 + c"1  

and we can choose c = ! "
1

#"
2
d$ % "

1

#"
1
d$ % .  

You can show that !1 and !2  are orthogonal and both still have eigenvalue a . 

QED.



Very Important Fact: 

 Commuting operators have common eigenfunctions. 

suppose A  and B  commute: A,B[ ] =AB ! BA = 0 . 

Let !i{ }  be the set of eigenfunctions of A : 

A! i = ai!i  

then,  B A! i( ) = B ai!i( ) = ai B!i( )  

but AB = BA so A B!i( ) = ai B! i( )  

∴ the function B! i  is an eigenfunction of A  with eigenvalue ai .  If !i  is the only 
eigenfunction of A  with eigenvalue ai , then B! i " !i  (in other words, B! i  can only be 
an eigenfunction of A  with eigenvalue ai  if it differs from !i  by a constant 
multiplicative factor – p. 2 of this handout).  Thus, 

B! i = bi!i  for some constant bi . 

If ai  is a degenerate eigenvalue, i.e. there are more than one eigenfunctions of A  with 
eigenvalue ai , then we can take linear combinations of these eigenfunctions to satisfy 
this condition. 

 


