MATHCHAPTER E

e

DETERMINANTS

In Chapter 7, we will encounter  linear algebraic equations in # unknowns. Such equa-
tions are best solved by means of determinants, which we discuss in this MathChapter.
Consider the pair of linear algebraic equations

ayx +a,y =d,

ayx +a,y=d, (E.1)

If we multiply the first of these equations by a,, and the second by a,, and then subtract,
we obtain

(apay, —ana,)x =da, —d,a,
or
ad, —a,.d
X = 22771 1272 (Ez)
gy — apady,

Similarly, if we multiply the first by a,, and the second by a,, and then subtract, we get

d, —a,d
y = ay,dy —ay d (E.3)

)y — dyydy,

Notice that the denominators in both Equations E.2 and E.3 are the same. We represent

a, a
: 11 12 - - . L.
a,,d,, — a,a,, by the quantity , which equals a,,a,, — a ,a,, and is called a

[24 a
21 22
2 x 2 determinant. The reason for introducing this notation is that it readily generalizes
to the treatment of n linear algebraic equations in n unknowns. Generally, a n x n 231
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determinant is a square array of n® elements arranged in n rows and n columns. A
3 x 3 determinant is given by

— a[la22a33 + a21a32a13 + a12a23a31 (E4)

a1 Gy oy _ _ _
Uy Uy llyy — oty las — dylysly,y

(We will prove this soon.) Notice that the element &, occurs at the intersection of the
ith row and the jth column.

Equation E.4 and the corresponding equations for evaluating higher-order determi-
nants can be obtained in a systematic manner. First we define a cofactor. The cofactor,
A of an element a; is a (n — 1) x (n — 1) determinant obtained by deleting the
ith row and the jth column, multiplied by (—1)"*/. For example, A ,, the cofactor of
element a , of

Ay dyg
D=\|a, a, ay,
Uy Uy day
is
A _(_1)l+2 ayp oy
12— a
31 33

EXAMPLE E-1
Evaluate the cofactor of each of the first-row elements in

2 -1 1
D=0 3 -1
2 =2 1
SOLUTION: The cofactor of a,, is
3 -1
A11:(*1)1+| 9 1‘23—2:1
The cofactor of a, is
L0 =1
A, = (D" 5 1|=72
and the cofactor of a, is
0 3
Al_‘g — (W1}1+3 5 5 — _6
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We can use cofactors to evaluate determinants. The value of the 3 x 3 determinant
in Equation E.4 can be obtained from the formula

a]] al? al}
al] a22 (223 = aHAH + a12A12 + a]3A13 (E5)
a ar (Zr

Thus, the value of D in Example E—-1 is

D=@2)(1)+ (=D(=2) + (1)(-6) = -2

EXAMPLE E-2
Evaluate D in Example E~1 by expanding in terms of the first column of elements
instead of the first row.

SOLUTION: We will use the formula
D=a, A, +a, A, +ay Ay

The various cofactors are

3 -1
An:(_])z _2 1‘:]
-1
Ay = (1) 5 1__1
and
-1 1
and so

D=2)(1)+ O (=D +2)(-2)=-2

Notice that we obtained the same answer for D as we did for Example E-1. This result
illustrates the general fact that a determinant may be evaluated by expanding in terms
of the cofactors of the elements of any row or any column. If we choose the second
row of D, then we obtain

—1
_ o 3
D=O-D*| _,

2 -1
2 =2

21 S
; 1‘+(—1)(—1)

ARRCIE

Although we have discussed only 3 x 3 determinants, the procedure is readily extended
to determinants of any order.
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EXAMPLE E-3
In Chapter 10 we will meet the determinantal equation

I 0
x 1
1 x
0 1

SO ==
= - O O

Expand this determinantal equation into a quartic equation for x.

SOLUTION: Expand about the first row of elements to obtain

x 10 11 OJ
x|l x 1]—]0 x 1|=0
0 1 x 0 1 .r’

Now expand about the first column of each of the 3 x 3 determinants to obtain

X

() (x) 1

1’:0
X

oo °-o

1
X

X
1
or

=D —x(x) - (HP=1) =0
or
=34+ 1=0

Note that although we can choose any row or column to expand the determinant, it is
easiest to take the one with the most zeroes.

A number of properties of determinants are useful to know:

The value of a determinant is unchanged if the rows are made into columns in the
same order; in other words, first row becomes first column, second row becomes
second column, and so on. For example,

\
—
]
I
—
Il
o —
—

If any two rows or columns are the same., the value of the determinant is zero. For
example,

0

w s
— O ™
r
L
I
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3. If any two rows or columns are interchanged, the sign of the determinant is
changed. For example,

31 —1 1 3 -1
—6 4 S5|=-— —6 5
I 2 2 2 1 2

4. If every element in a row or column is multiplied by a factor k. the value of the
determinant is multiplied by k. For example,

-1 2

6 8
-1 2

3 4
‘ - 2
5. If any row or column is written as the sum or difference of two or more terms, the
determinant can be written as the sum or difference of two or more determinants
according to

ay :i:a’], ap 4aj; ayy by dyg ] PR
Uy Ty Ay Gy | = | dy lyy Gy | E Gy Gy Gy
ay ta;  ay  ag Ay Ay dy R
For example,
3 3 2+1 3 2 3 n 1 3
2 6| | =2+4 6| |2 6 4 6

6. The value of a determinant is unchanged if one row or column is added or
subtracted to another, as in

all al?_ a13 all + al2 all a13
aZl aZE a23 = a?l + CI22 all a?.}
a31 a32 a33 a31 + a32 a32 (133
For example
1 -1 3 0 -1 3 0o -1 3
4 0 2(=/4 0 2(=/4 0 2
1 21 3 21 7 23

In the first case we add column 2 to column 1, and in the second case we added
row 2 to row 3. This procedure may be repeated n times to obtain

ai] alZ al] Cl” + ”alz ali (113
aZl aZZ aZ} = a2l + ’mzz a}ﬁ a23 (Eé)
a31 32 a}} aBI + na}'ﬁ a32 a33
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This result is easy to prove:

aytna, a, a; Ay Ay G dp dy
Ay Fnay, Ay Gy | =4y Gy Gy |+ ay, a, a,
ay +nay,  ay,  ay ty Oy Ay Gy Gy Oy
ay 4y dp
=|dy ay ay|+0
a3 Gy Ay

where we used rule 5 to write the first line. The second determinant on the right
side equals zero because two columns are the same (rule 2).

We provided these rules because simultaneous linear algebraic equations can be
solved in terms of determinants. For simplicity, we will consider only a pair of equations
but the final result is easy to generalize. Consider the two equations

ayx +a,y =d,

E.7
ayx +ayy =d, =7

If d| = d, = 0, the equations are said to be homogeneous. Otherwise, they are called
inhomogeneous. Let’s assume at first that they are inhomogeneous. The determinant of
the coefficients of x and y is

D= ‘ Gy dp
21 a’z_‘Z
According to Rule 4,
a,x a
11 12 ’ =xD
aZIx a22

Furthermore, according to Rule 6,

apx +a,y ap,

=xD E.8
ayX +ay,y ay ) (=8

If we substitute Equation E.7 into Equation E.8, then we have

dy a, =D
d, ay
Solving for x gives
dl aIZ
d a
x= 2= (E.9)
11 aIZ
a2l a22
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Similarly, we get

21

(E.10)

Notice that Equations E.9 and E. 10 are identical to Equations E.2 and E.3. The solution
for x and y in terms of determinants is called Cramer’s rule. Note that the determinant
in the numerator is obtained by replacing the column in D that is associated with the
unknown quantity with the column associated with the right sides of Equation E.7.

This result is readily extended to more than

two simultaneous equations.

EXAMPLE E-4
Solve the equations

X+y+
2x —y —
x+2y—

SOLUTION: The extension of Equations

Similarly,

2
1 —
-3 —
1
-1 =
2 -

[ N T S VN —

and

—

—_ | =
[y

2 -1 =1

z=2
z=1
z=-3
E9and E.101s
1
—1
—1 9
= ‘=1
1 9
-1
—1
1
1
1 -9
:—:—1
1
1
1
2
1
-3 1
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What happens if d, = d, = 0in Equation E.77 In that case, we find thatx = y = 0,
which is an obvious solution called a frivial solution. The only way that we could
obtain a nontrivial solution for a set of homogeneous equations is for the denominator
in Equations E.9 and E.10 to be zero, or for

D

=0 (E.11)

In Chapter 10, when we discuss ethene, we will meet the equations

cla—E)+c,=0
and

cB+ela—E)=0

where ¢, and ¢, are the unknowns (corresponding to x and y in Equation E.7), « and f8
are known quantities, and E is the energy of the 7 electrons. We can use Equation E.11
to derive an expression for the m-electron energies in ethene. Equation E.11 says that
for a nontrivial solution (c,, ¢,) to exist, we must have that

o —FE B
B o — K

or that (@ — E)* — B = 0. Taking the square root of both sides and solving for E gives
E=a+p
Although we considered only two simultaneous homogeneous algebraic equations,

Equation E.11 is readily extended to any number. We will use this result in the next
chapter.

Problems

E-1. Evaluate the determinant

i

Il

|
o —
S L o
—

Add column 2 to column | to get

[T S RN
O —
[
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E-2.

E-3.

E-4.

E-5.

E-6.

E-7.

E-8.

and evaluate it. Compare your result with the value of D. Now add row 2 of D to row 1
of D to get

1
-1

3
2
2 1

o W

and evaluate it. Compare your result with the value of D above.

Interchange columns 1 and 3 in D in Problem E~1 and evaluate the resulting determinant.

Compare your result with the value of D. Interchange rows 1 and 2 of D and do the same.

Evaluate the determinant
1 6 1
D=|-2 4 =2
1 -3 1

Can you determine its value by inspection? What about

2 6 1
D=|-4 4 =2
2 =3 1
Find the values of x that satisfy the following determinantal equation
x 1 1 1
I x 0 0
10 x 0] v
1 0 0 «x
Find the values of x that satisfy the following determinantal equation
x 1 0 1
I x 1 0
0 1 x 1] 0
10 1 x

Show that
cosf —sinf 0
sind cosfl 0 =1

0 0 1
Solve the following set of equations using Cramer’s rule
x+y=
3x =2y =5

Solve the following set of equations using Cramer’s rule
X+2y+3z=-5
—x —3y+z=-14
x+y+z=1
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MATRICES

Many physical operations such as magnification, rotation, and reflection through a
plane can be represented mathematically by quantities called matrices. A matrix is
simply a two-dimensional array that obeys a certain set of rules called matrix algebra.
Even if matrices are entirely new to you, they are so convenient that learning some of
their simpler properties is worthwhile.

Consider the lower of the two vectors shown in Figure F.1. The x and y components
of the vector are given by x, = r cos@ and y, = r sin v, where 7 is the length of r . Now
let’s rotate the vector counterclockwise through an angle 6, so that x, = r cos(a + 0)
and y, = rsin(a + ¢) (see Figure F.1). Using trigonometric formulas, we can write

X, = rcos(a +6) = rcosacosf — rsinasing

y, =rsin(a +6) = rcosasin® + rsina cos ¢
or
X, =Xx,cos8 — y sind

(F.1)
y, = X, sinfl + y, cost

FIGURE FE1
An illustration of the rotation of a vector r, .
through an angle 6. 441
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We can display the set of coefficients of x, and y, in the form

R — (cos@ —sind ) E2)

sin @ cos @

We have expressed R in the form of a marrix, which is an array of numbers (or functions
in this case) that obey a certain set of rules, called matrix algebra. We will denote a
matrix by a sans serif symbol, e.g., A, B, etc. Unlike determinants (MathChapter E),
matrices do not have to be square arrays. Furthermore, unlike determinants, matrices
cannot be reduced to a single number. The matrix R in Equation E.2 corresponds to a
rotation through an angle 6.

The entries in a matrix A are called its matrix elements and are denoted by a,.
where, as in the case of determinants, 7 designates the row and j designates the column.
Two matrices, A and B, are equal if and only if they are of the same dimension and
a; =b, tor all 7 and ;. In other words, equal matrices are identical. Matrices can be
added or subtracted only if they have the same number of rows and columns, in which
case the elements of the resultant matrix are given by a,; + b,.. Thus, if

-3 6 4 211
A_(l 0 2) fnd B‘(—e 4 3)

-5 4 5

then

C:A—i—B:(

—
-]
n

S

If we write

-6 12 8
A+A—2A—( 50 4)

we see that scalar multiplication of a matrix means that each element is multiplied by
the scalar. Thus,

- — (;Mll CM]2
M= ((;le cM,, (E.3)

-

EXAMPLE F-1
Using the matrices A and B above, form the matrix D = 3A — 2B.

SOLUTION:
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One of the most important aspects of matrices is matrix multiplication. For sim-
plicity, we will discuss the multiplication of square matrices first. Consider some linear

transformations of (x, y,) into (x,, ¥,):

X, =apx; tany,
Y, =4y X+ ayy,

represented by the matrix

Now let’s transform (x,, y,) into (x,, y,):

xy=b,x, +b,y,

v, =b,x, + Db,y

;
21772 2272

b, b
B— 11 12
(bm bn)

Let the transformation of (x, y,) directly into (x5, y;) be given by

represented by the matrix

Xy = O X Ry,

Yy = Gy T+ 0,

represented by the matrix

Symbolically, we can write that

C=BA

(F.4)

(F5)

(F.6)

(F.7)

(F.8)

(F.9)

because C results from transforming from (x , y,) to (x,. y,) by means of A followed
by transforming (x,, v,) to (x;, y;) by means of B. Let’s find the relation between the

elements of C and those of A and B. Substitute Equations F.4 into F.6 to obtain

xy = by (a, x, +a,y) +b,lay,x, +a,y)
y; = by (a,x, +a,y) +byla,x, +a,y,)

or

xy = (by,a,, +by,a,)x, + (b a, +bpay,)y,
vy = (bya,, + bya,)x, + (bya,, + bya,,)y,

(F.10)

443
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Thus, we see that

— — bl] b12 all alZ — b]]all + b12a2] bl[aIZ + b12a22
C_BA(b b, a, a, ) \bya, +b,a, b a,+b.a (F11)

21 217711 227721 21712 22722

This result may look complicated, but it has a nice pattern which we will illustrate two
ways. Mathematically, the ijth element of C is given by the formula

c, =Y bua, (F.12)
%
For example,
€y = Zblkakl = buan + byya,,
k

as in Equation F.11. A more pictorial way is to notice that any element in C can be
obtained by multiplying elements in any row in B by the corresponding elements in
any column in A, adding them, and then placing them in C where the row and column
intersect. For example, ¢, is obtained by multiplying the elements of row 1 of B with
the elements of column 1 of A, or by the scheme

- (bn blz) (all alz) — ( 1% —I—b|2a2] )
b21 by, ty  dp ’ ’

and ¢, by
{
_)(bu bIQ)(all alz):(' b11a12+b12a22)
b21 bzz ) Gy ' ’
EXAMPLE F-2
Find C = BAif
1 2 1 -3 0 —I
B= 3 — and A= 1 4 0
-1 -1 2 I 1 1
SOLUTION:

1 2 1 -3 0 -1
C= 3 0 -1 1 4 0
-1 -1 2 11 1

—3+24+1 04+84+1 —1+0+1
=1-94+0-1 04+0—-1 =-340-1
3—142 0-4+42 1+0+2

0 9 0
=|-10 -1 -4
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EXAMPLE F-3
The matrix R given by Equation F.2 represents a rotation through the angle . Show
that R” represents a rotation through an angle 2.

R? cosf) —sinf cosf) —sind

~ \ siné cos 6 sin @ cos
cos’@ —sin’d —2sinfcosd
2sinfcosf  cos’f —sin’ @

SOLUTION:

Using standard trigonometric identities, we get

,  [cos26 —sin26
sin 26 cos 26

which represents rotation through an angle 26.

! |

Matrices do not have to be square to be multiplied together, but either Equation F.11
or the pictorial method illustrated above suggests that the number of columns of B must
be equal to the number of rows of A. When this is so, A and B are said to be compatible.
For example, Equations F.4 can be written in matrix form as

DG e
Vs dy Uy »

An important aspect of matrix multiplication is that BA does not necessarily
equal AB. For example, if '

=0 0) = m=(5 )
o= o)l 1)-0 %)
r=(o 1) (1 0)=(-0 o)

and so AB = —BA in this case. If it does happen that AB = BA, then A and B are said
to commute.

then

—

and

o -

EXAMPLE F-4
Do the matrices A and B commute if

21 1 1
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SOLUTION:

23
AB:(O 1)

2 2
BA =
G 7)
so they do not commute.

| |

Another property of matrix multiplication that ditfers from ordinary scalar multi-
plication is that the equation

and

AB=0

where O is the zero matrix (all elements equal to zero) does not imply that A or B
necessarily is a zero matrix. For example,

(2) (0 )=60)

A linear transformation that leaves (x , v,) unaltered is called the identity transfor-
mation, and the corresponding matrix is called the identity matrix or the unit matrix. All
the elements of the identity matrix are equal to zero, except those along the diagonal,
which equal one:

1 0 0 0
0 1 0 0
i—|o o1 0
000 - 1

The elements of | are 3{.}., the Kronecker delta, which equals one when i = j and zero
when i = j. The unit matrix has the property that

IA = Al (F.14)

The unit matrix is an example of a diagonal matrix. The only nonzero elements of
a diagonal matrix are along its diagonal. Diagonal matrices are necessarily square
matrices.

If BA = AB = [, then B is said to be the inverse of A, and is denoted by A~". Thus,
A~" has the property that

AAT = ATTA = | (F.15)

If A represents some transformation, then A™" undoes that transformation and restores
the original state. There are recipes for finding the inverse of a matrix, but we won’t



MathChapter F / MATRICES

need them (see Problem F-9, however). Nevertheless, it should be clear on physical
grounds that the inverse of R in Equation F.2 is

R = R(_0) = ( cosf sinf )

—sin#  cost (F.16)
which is obtained from R by replacing & by —6. In other words, if R(#) represents a
rotation through an angle @, then R~' = R(—#) and represents the reverse rotation. It
is easy to show that R and R~! satsify Equation F.15. Using Equations F.2 and F.16, we

have
R R — cosf sinf cost) —sinf

“ \—sin@ cos# sin @ cos
_ [cos’ O + sin 6 0
- 0 cos’ 8 + sin 6
(10
A0 1

and

RR — cosf)  —sinf cosd  sinf
~ \siné cos @ —sin# cosd
_ {cos’ 6 + sin® 0
o 0 cos’ 6 + sin’ @

(o 7)

We can associate a determinant with a square matrix by writing

o 2
2

21 2 2n

nl 2n T amy

Thus, the determinant of R is

. —sin# 2 .
LF)SH s \ = cos’ @ +sin’ 0 =1
sinf cosf
and det R™' = 1 also. If det A = 0, then A is said to be a singular matrix. Singular

matrices do not have inverses.
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A quantity that arises in group theory, which we will study in the next chapter, is
the sum of the diagonal elements of a matrix, called the trace of the matrix. Thus, the
trace of the matrix

/2 0 1
B=] 0 2 1
11 12
is 3, which we write as Tr B = 3.
Problems
F-1. Given the two matrices
I 0 -1 -1 1 0
A=1]1-1 2 0 and B= 3 0 2
0 1 1 1 1 1

form the matrices C = 2A — 3B and D = 6B — A.

F-2. Given the three matrices

170 1 10 —i L1 0
A“E(l 0) B=§(f 0) C_i(o —1)

show that A + B 4 C? = %I, where | is a unit matrix. Also show that

AB — BA =iC

BC —CB =iA

CA—-AC=1iB

F-3. Given the matrices
: 01 0 | 0 —i 0 1 0 0
=— |1 0 1 =—1|i 0 — | C=10 0 0
V2 01 0 V2 0 i 0 0 0 -1
show that
AB —BA =iC
BC—-CB =iA

CA—AC=iB
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and
AP+ B 4+ Cr =2l
where | is a unit matrix.

F-4. Do you see any similarity between the results of Problems F—2 and F-3 and the commu-
tation relations involving the components of angular momentum?

F-5. A three-dimensional rotation about the z axis can be represented by the matrix

cos —sind 0
R=1|sinf cos@ 0
0 0 1
Show that
det R = [R| = 1

Also show that

cosf  sinf 0
R =R(-8) = | —sinf8 cosf 0
0 0 1

F-6. The transpose of a matrix A, which we denote by A, is formed by replacing the first row
of A by its first column, its second row by its second column, etc. Show that this procedure

is equivalent to the relation &U, = a,,. Show that the transpose of the matrix R given in
Problem F-5 is

B cos@ sin@ 0
R= 1| —sinf cosf® 0
0 0 1

Note that R = R™'. When R = R™', the matrix R is said to be orthogonal.
3
c_(2 % (1 o0
3 3 _ vl 1
V3 N
2 " 2
a =

l ) ' (ﬁ )
2 2

F-7. Given the matrices

=

[STE

show that
" !
c,C, =0, Cio, =0,
vt _ 0
oo, =C, Co/ = g,

Calculate the determinant associated with each matrix. Calculate the trace of each matrix.
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F-8. Which of the matrices in Problem F-7 are orthogonal (see Problem F-6)?

F-9. The inverse of a matrix A can be found by using the following procedure:

a. Replace each element of A by its cofactor in the corresponding determinant (see
MathChapter E for a definition of a cofactor).

b. Take the transpose of the matrix obtained in step 1.
¢. Divide each element of the matrix obtained in Step 2 by the determinant of A.

For example, if

then det A = —2 and

I/ 4 =2
_1_77
A= 2(—3 1)

Show that AA™" = A™'A = |. Use the above procedure to find the inverse of

[ 0 2 3
A:(2 ~’2) and A=|1 1

IO 1
V2 2.0 1

F-10. Recall that a singular matrix is one whose determinant is equal to zero. Referring to the
procedure in Problem F-9, do you see why a singular matrix has no inverse?

F-11. Consider the simultaneous algebraic equations

x+y=3
dx =3y =35

Show that this pair of equations can be written in the matrix form

Ax =c (1)

() () woas)

Now multiply Equation | from the left by A™" to obtain

where

x=A"c (2)

Now show that
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and that

‘— 1 /=3 -1\ /3 (2
o7\-4 1J\s)] U
or that x = 2 and y = 1. Do you see how this procedure generalizes to any number of
simultaneous equations?

F-12. Solve the following simultaneous algebraic equations by the matrix inverse method
developed in Problem F-11:

x+y—z=1
2x—=2y+z=6

x+3z=0
First show that
| 6 301
Al = e 5 —4 3
-2 =1 4

and evaluate x = A~ 'c.
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