
ANTISYMMETRIC WAVEFUNCTIONS: SLATER DETERMINANTS (06/30/16) 

Wavefunctions that describe more than one electron must have two characteristic 
properties.  First, since all electrons are identical particles, the electrons’ coordinates must 
appear in wavefunctions such that the electrons are indistinguishable.  This means that 
the coordinates of electrons in an atom or molecule must enter into the wavefunction so 
that in the many-electron probability distribution, |Ψ |2 = Ψ*Ψ , every electron is 
identical.  The second requirement, and this is a more complete and rigorous statement of 
the Pauli exclusion principle, is that the wavefunction for a system of two or more 
electrons must change sign any time we permute the coordinates of any two electrons,  

! . 
This is a property of fermions (among which are electrons, protons, and other half-
integral spin particles); in systems with more than one identical fermion, only probability 
distributions corresponding to antisymmetric wavefunctions are observed.  Let us review 
the 2-electron case. 

If we attempt to construct a two-electron wavefunction as a product of individual 
electron orbitals, φa and φb, then neither φa(1)φb(2) nor	φa(2)φb(1) alone are satisfactory 
since we require that the electrons be indistinguishable.  The combinations φa(1)φb(2) ±	
φa(2)φb(1) do meet the requirement of indistinguishability, but these functions just 
describe the spatial distribution of the electrons; we must also consider their spin.  If the 
two electrons have different spin eigenfunctions, indistinguishability means that neither 
α1β2 nor	α2β1 is satisfactory, but α1β2 ±	β1α2 are acceptable – as are α1α2 and	β1β2, of 
course.  As we’ve noted, the overall wavefunction for two electrons must be 
antisymmetric with respect to interchange of the electrons’ labels. This admits four 
possibilities, as long as both φa and φb are singly occupied (normalization constants 
included): 

!  

The left superscripts on 1Ψ and 3Ψ are the spin multiplicities (2S + 1); the triplet 
wavefunctions are all eigenfunctions of ! with eigenvalue S(S + 1) = 2 and they are 
degenerate as long as we consider spin-independent contributions to the energy (i.e., there 
is no applied magnetic field and spin-orbit coupling is neglected).  The values of MS (= 
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ms1 + ms2, the z-components of for each wavefunction are given, and the number of 
values MS takes, 2S + 1, for a given S is the spin multiplicity for the state.  Slater pointed 
out that if we write many-electron wavefunctions as (Slater) determinants, the 
antisymmetry requirement is fulfilled.  Slater determinants are constructed using 
spinorbitals in which the spatial orbitals are combined with spin functions from the 
outset.  We use the notation !  and add a ‘bar’ over the top to indicate ‘spin-
down,’ !   Slater determinants are constructed by arranging spinorbitals in 
columns and electron labels in rows and are normalized by dividing by ! , where N is 
the number of occupied spinorbitals.  This arrangement is universally understood so the 
notation for Slater determinants can be made very compact; four Slater determinants can 
be constructed using !  

!  

What does this notation mean?  To see, let’s expand !  out, step-by-step: 

!  

Notice that the notation assumes the determinant is normalized and that we have adopted 
the conventions mentioned: running over spinorbitals in columns and over electron labels 
in rows.  Proceeding in the same way for ! , 

!  

Combinations of  yield the two wavefunctions with MS = 0: 

!  

 
!
S)

  φa (1) ≡ ϕa (1)α1

  φa (1) ≡ ϕa (1)β1.

  N !

  φa , φa , φb , and φb:

φaφb ,  φaφb ,  φaφb ,  and φaφb
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ϕa (2)β2 ϕb(2)β2

= 1
2
ϕa (1)β1 •ϕb(2)β2 –ϕb(1)β1 •ϕa (2)β2( )

Thus, φaφb = 1
2
ϕa (1)ϕb(2)−ϕb(1)ϕa (2)( )β1β2 =

3Ψ(MS = –1)

  
φaφb  and φaφb

φaφb = 1
2!

φa (1) φb(1)
φa (2) φb(2)

= 1
2

ϕa (1)β1 ϕb(1)α1
ϕa (2)β2 ϕb(2)α2

= 1
2
ϕa (1)ϕb(2) •β1α2 –ϕb(1)ϕa (2) •α1β2( )

φaφb = 1
2!

φa (1) φb(1)
φa (2) φb(2)

= 1
2

ϕa (1)α1 ϕb(1)β1
ϕa (2)α2 ϕb(2)β2
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Take particular note of the fact that the spatial parts of all three triplet wavefunctions are 
identical and are different from the singlet wavefunction. To summarize, in terms of 
determinants the singlet and triplet wavefunctions are 

!  

Determinants can be represented diagramatically using ‘up-’ and ‘down-arrows’ in 
orbitals in a manner familiar to chemists.  However, the diagrams now take on more 
precise meanings.  While the MS = ±1 components of the triplet state are represented as 

single determinants, the singlet 
wavefunction and the MS = 0 component 
of the triplet state should be written as 
combinations of the determinants: 

The general form of a Slater determinant 
comports with this discussion.  When 
expanded, the determinant for N electrons in N 
spinorbitals yields N! terms, generated by the N! possible permutations of electron labels 
among the spinorbitals and differing by a multiplicative factor of –1 for terms related by 
one pairwise permutation.  To be explicit, written out in determinantal form we have 

!  

Since electronic wavefunctions for two or more electrons should be written as 
determinants, our goal is to determine the symmetry characteristics of determinants, or 
more specifically, how the determinants form bases for irreducible representations.  
Clearly, we want to avoid expanding the determinant out to exhibit N! terms, if possible. 
To do that, three properties of determinants can be used (In these expressions, the 
spinorbitals can carry either spin, [αi or	βi ]: i = electron label): 

• Swap any two rows (or columns) of a determinant, and the sign changes, 
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!  

Therefore, if any two rows (or columns) are identical, the determinant is 
zero.  This guarantees that we can’t violate the Pauli principle by using the 
same spinorbital twice. 

• Columns (or rows) can be factored, 

!  

• Any constant (including –1) can be factored out, 

!  

The latter two rules will be useful when evaluating the results of symmetry operations. 

Let’s see how these rules apply to a closed-shell molecule, H2O, for which we will 
examine a Slater determinant constructed from the valence MOs.  The four valence MOs 
for water are depicted here and the transformation properties of the MOs are summarized 
as follows 

!  

If we combine the orbital transformation properties with 
the rules given above for determinants, we can find the 
symmetry of the ground electronic state wavefunction.  Each 
symmetry operation operates on all the in the determinant 
and the rules given above will be used to evaluate the 
irreducible representations to which that ground state 
determinant belongs: 

!  

!  

This singlet, closed-shell electronic state wavefunction (a Slater determinant) belongs the 
totally symmetric representation, 1A1.  Since electrons are paired in orbitals in closed-
shell molecules, if the doubly occupied orbitals all belong to one-dimensional 
representations, the wavefunction will always belong to the totally symmetric 

  
φA ! φP ! φQ ! = − φA ! φQ ! φP !

  

φA ! φP + φQ ! φR ! =

  φA ! φP ! φR ! + φA ! φQ ! φR !

  
 φA ! c φp ! φR ! = c φA ! φp ! φR !

  

a1
R⎯ →⎯ +a1 for all symmetry operations, R.

b1
R⎯ →⎯ +b1 for R = E,σ v1 and − b1 for R = C2 ,σ v2.

b2
R⎯ →⎯ +b2  for R = E,σ v2  and − b2  for R = C2 ,σ v1.

  

1a11a1b2 b2 2a12a1b1b1
C2⎯ →⎯⎯ 1a11a1 −b2( ) −b2( )2a12a1 −b1( ) −b1( ) = + 1a11a1b2 b2 2a12a1b1b1

1a11a1b2 b2 2a12a1b1b1
σ v1⎯ →⎯⎯ 1a11a1 −b2( ) −b2( )2a12a1b1b1 = + 1a11a1b2 b2 2a12a1b1b1

  
1a11a1b2 b2 2a12a1b1b1

σ v2⎯ →⎯⎯ 1a11a1b2 b2 2a12a1 −b1( ) −b1( ) = + 1a11a1b2 b2 2a12a1b1b1
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representation.  Although it is not as transparently true, this 
applies to closed-shell molecules with degenerate orbitals as 
well.  To consider just the C3 operation acting upon the 
ground state determinant for NH3, we first recall how the 
orbitals transform: 

!  

Transformation of the determinants is a bit laborious, but 
straightforward and we can ignore the nondegenerate 
spinorbitals: 

!  

We expand out to four determinants obtained by multiplying through the first two 
parenthetical factors, ...  

!  

... expanding this out further, we recall that any determinant with two identical columns is 
zero, which eliminates all but one term for each of these four determinants, ... 

!  

... finally we perform two column swaps in the second determinant and one column swap 
in each of the third and fourth determinants, leaving the sign of the second unchanged 
and switching the sign of the third and fourth, ... 

! . 

So we finally conclude that   All the other C3v 
operations yield the same result. The coefficients ‘work out’ in the end because the 
symmetry operations are orthogonal transformations (unitary transformations, in the 
complex case) – readers are encouraged to convince themselves that this is the case. 

In the simplest open-shell case, a state is represented by a single determinant – with 
one unpaired electron in a nondegenerate orbital – and the state symmetry is the same as 
the symmetry of the half-occupied MO.  If two nondegenerate orbitals are half occupied, 
the symmetry of the state is determined by taking the direct product of the two orbitals’ 
irreducible representations.  For the triplet state of methylene (:CH2), the methylene 
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valence orbital symmetries are the same as those for water (above) and the triplet state 
electronic configuration is (1a1)2(b2)2(2a1)1(b1)1.  The MS = ±1 components of the triplet 
state work out quite simply to transform as B1, e.g, 

!  

where the closed shells are not written out.  Let’s also confirm that the MS = 0 component 
also behaves as a B1 basis function: 

!  

Let’s examine the electronic states of cyclobutadiene (CB), for which there is a half-
occupied degenerate set of orbitals.  The four CB π orbitals are depicted below; the 
lowest-energy configuration is (a2u)2(eg)2.  CB is D4h, but only the D4 subgroup need be 
considered because all the states that can arise from this configuration are gerade. We 
focus entirely on the partially occupied eg orbitals, which transform as follows, 

!  

There are six determinants of interest: 
!  
The first two clearly belong to a triplet and 
transform as follows: 

!  

!  

   

1a11a1b2 b2 2a1b1
C2⎯ →⎯⎯ !2a1 −b1( ) = − 1a11a1b2 b2 2a1b1

1a11a1b2 b2 2a1b1
σ v1⎯ →⎯⎯ !2a1b1 = + 1a11a1b2 b2 2a1b1

1a11a1b2 b2 2a1b1
σ v2⎯ →⎯⎯ !2a1 −b1( ) = − 1a11a1b2 b2 2a1b1

   

!2a1b1 +!2a1b1
C2⎯ →⎯⎯ !2a1(−b1) +!2a1(−b1) = − !2a1b1 +!2a1b1( )

!2a1b1 +!2a1b1
σ v1⎯ →⎯⎯ +!2a1b1 +!2a1b1

!2a1b1 +!2a1b1
σ v2⎯ →⎯⎯ !2a1 −b1( ) +!2a1(−b1) = − !2a1b1 +!2a1b1( )

  

ea

C4⎯ →⎯⎯ +eb   ;  eb

C4⎯ →⎯⎯ −ea

  ea

C4
2

⎯ →⎯⎯ −ea   ;  eb

C4
2

⎯ →⎯⎯ −eb

ea
′C2x⎯ →⎯⎯ −eb   ;  eb

′C2x⎯ →⎯⎯ −ea

ea

′′C2(x= y)⎯ →⎯⎯⎯ ea   ;  eb

′′C2(x= y)⎯ →⎯⎯⎯ −eb

  
eaeb , ea eb , eaeb , ea eb , ea ea , and ebeb .

  

eaeb
C4⎯ →⎯⎯ eb(−ea ) = + eaeb

eaeb
C4

2

⎯ →⎯⎯ (−ea )(−eb) = + eaeb

  
eaeb

′C2x⎯ →⎯⎯ (−eb)(−ea ) = ebea = − eaeb   ;   eaeb

′′C2(x= y)⎯ →⎯⎯⎯ ea (−eb) = − eaeb
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This demonstrates that  belong to the A2 representation (A2g in D4h).  As 
the reader can readily verify, the combination  also belongs to A2 (A2g).  It is 
straightforward to show that  has B1 (B1g) symmetry: 

Finally,  form basis for a reducible representation that yields the A1⊕ B2 
(A1g⊕ B2g) representations, 

The reader can demonstrate that  has A1g symmetry and 
 has B2g symmetry.  (A1g and B2g projection operators applied to  or 

! will also generate the appropriate combinations.)   
In summary, the (a2u)2(eg)2 configuration gives rise to 3A2g, 1B2g, 1A1g, and 1B2g states 

and we’ve established the determinantal wavefunctions for each of these states: 

!  

  
eaeb  and ea eb

  
eaeb + ea eb

 
eaeb − ea eb

  
ea ea  and ebeb

  | ea ea | + | ebeb |

  | ea ea | − | ebeb |   | ea ea |

  | ebeb |

  

                               MS                                          MS

3A2g

eaeb  1           

1
2

eaeb + ea eb( )  0           

ea eb −1           

⎧

⎨

⎪
⎪

⎩

⎪
⎪

1B1g : 1
2

eaeb − ea eb( )      0
1A1g : 1

2
ea ea + ebeb( )      0

1B2g : 1
2

ea ea − ebeb( )      0
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ea ea

C4⎯ →⎯⎯ ebeb    ;   ebeb

C4⎯ →⎯⎯ (−ea )(−ea ) = ea ea

ea ea

C4
2

⎯ →⎯⎯ (−ea )(−ea ) = ea ea    ;   ebeb

C4
2

⎯ →⎯⎯ (−eb)(−eb) = ebeb

ea ea
′C2x⎯ →⎯⎯ (−eb)(−eb) = ebeb    ;   ebeb

′C2x⎯ →⎯⎯ (−ea )(−ea ) = ea ea

ea ea

′′C2(x= y)⎯ →⎯⎯⎯ ea ea    ;   ebeb

′′C2(x= y)⎯ →⎯⎯⎯ (−eb)(−eb) = ebeb

eaeb − eaeb
C4⎯ →⎯⎯ eb(−ea ) − eb(−ea ) = − ebea + ebea = − eaeb − eaeb⎡

⎣
⎤
⎦

eaeb − eaeb
C4
2

⎯ →⎯⎯ (−ea )(−eb) − (−ea )(−eb) = + eaeb − eaeb⎡
⎣

⎤
⎦

eaeb − eaeb
′C2x⎯ →⎯⎯ (−eb)(−ea ) − (−eb)(−ea ) = ebea − ebea = + eaeb − eaeb⎡

⎣
⎤
⎦

eaeb − eaeb
′′C2(x= y)⎯ →⎯⎯⎯ ea (−eb) − ea (−eb) = − eaeb − eaeb⎡

⎣
⎤
⎦



Background: Energies of Determinantal Wavefunctions 

Several texts in quantum chemistry offer rigorous and complete derivations for 
energy expressions of determinantal wavefunctions.  In this document, we’ll provide a 
graphical method arriving at the results after providing a ‘physical motivation’ for the 
method.  To accomplish the latter purpose, let’s reexamine the determinants from which  
the singlet and triplet two-election wavefunctions were constructed.  (A simple example: 
a helium atom in an excited 1s12s1 configuration; φa  = 1s and φb  = 2s): 

In the absence of explicitly spin-dependent terms in the Hamiltonian (like an applied 
magnetic field or spin-orbit coupling), the energies of these wavefunctions are only 
affected by the spatial distribution of the electrons specified by these expressions, so let’s 
examine just the spatial factors: 

!  

Let’s evaluate the energies by taking the expectation values of the Hamiltonian (the ‘+’ 
signs apply to the singlet and the ‘–’ signs apply to the triplet): 

!  

The first two integrals have the same value and are evaluated in a straightforward way, 

!  

The operators  and  would include, for the helium 1s12s1 case, the kinetic energy 
operators and electron-nuclear Coulombic attraction terms for each of the electrons – in 
general they include all the kinetic and potential energy terms that depend only on each 
electron’s individual coordinates.  ha and hb are hence referred to as ‘one electron’ 

  
1Ψspace =

1
2
ϕa (1)ϕb(2) +ϕb(1)ϕa (2)( )     ;    3Ψspace =

1
2
ϕa (1)ϕb(2) –ϕb(1)ϕa (2)( )

1,3E = 1
2 ϕa (1)ϕb(2) ±ϕb(1)ϕa (2)( )H ϕa (1)ϕb(2) ±ϕb(1)ϕa (2)( )dτ1 dτ 2∫∫

1,3E = 1
2

ϕa (1)ϕb(2) H  ϕa (1)ϕb(2)dτ1 dτ 2∫∫ + ϕb(1)ϕa (2) H  ϕb(1)ϕa (2)dτ1 dτ 2∫∫ ±

   ϕa (1)ϕb(2) H  ϕb(1)ϕa (2)dτ1 dτ 2∫∫ ± ϕb(1)ϕa (2) H  ϕb(1)ϕa (2)dτ1 dτ 2∫∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

ϕa (1)ϕb(2) H  ϕa (1)ϕb(2) dτ1 dτ2∫∫ = ϕa (1)ϕb(2) ĥ1 + ĥ2 +
e2

r12

⎛

⎝
⎜

⎞

⎠
⎟  ϕa (1)ϕb(2) dτ1 dτ2∫∫

= ϕa (1)ĥ1∫ ϕa (1)dτ1 + ϕb(2)ĥ2∫ ϕb(2)dτ1 + e2
 

ϕa
2(1)ϕb

2(2)
r12

  dτ1 dτ2∫∫ = ha + hb + Jab.    

where the normalization has been used: ϕa
2 dτ∫ = ϕb

2 dτ = 1∫( )
  ĥ1   ĥ2
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energies.  Jab is called a Coulomb integral and has a semiclassical interpretation in that it 
can be viewed as the electron-electron repulsion energy between one electron in charge 
cloud !  and a second electron in charge cloud ! .  The last two integrals are equal to 
each other as well, 

!  

Kab is called an exchange integral and 2Kab = 1E – 3E, the singlet-triplet energy gap.  Note 
that if we had calculated the expectation values of H using !  (p. 2), the 
cross-terms that give the exchange integrals don’t survive due to orthogonality of the spin 
functions, and their ‘energies’ are ha + hb + Jab.  Exchange integrals are invariably 
positive since φa φb(1) and φa φb(2) will tend to have same sign when the integrand has its 
greatest magnitude (when r12 → 0).  Kab is largest when φa and φb extend over the same 1

region of space.  The antisymmetric nature of the triplet spatial wavefunction guarantees 
that in the triplet state the electrons in φa and φb are never at the same location (  if 
the two electrons have the same coordinates), i.e., the triplet state lies lower in energy 
because there is less electron-electron repulsion. 

The Rules: The above background will serve to rationalize the following rules for 
evaluating energies of determinants, which contain the following terms: (1) a ‘one-
electron’ orbital energy, ! , for each electron. !  will generally include two-electron 
terms involving e-e repulsions with the atomic core electrons (screening) – which 
distinguishes “ ” from the symbol “ ” used above, (2) for each pairwise e–- e– 
repulsion, a Coulomb term (a Jij 
contribution), and (3) an exchange 
‘stabilization’ (a –Kij contribution) 
for each like-spin e–- e– interaction.  
As an example, consider the five 
determinants illustrated here.  
Associated with each of these 
determinants are six Coulomb 
integral contributions since there 
must be six unique pairwise 
repulsions with four electrons.  The 
two determinants with MS = ±1 are 
associated with three exchange 

ϕa
2 ϕb

2

   

± ϕa (1)ϕb(2) H  ϕb(1)ϕa (2) dτ1 dτ2∫∫ = ± ϕa (1)ϕb(2) ĥ1 + ĥ2 +
e2

r12

⎛

⎝
⎜

⎞

⎠
⎟  ϕb(1)ϕa (2) dτ1 dτ2∫∫

= ± ϕa (1)ϕb(2) 

e2

r12

⎛

⎝
⎜

⎞

⎠
⎟  ϕb(1)ϕa (2) dτ1 dτ2∫∫ = ±e2 ϕaϕb(1) ϕaϕb(2)

r12

 dτ1 dτ2∫∫ = ±Kab

1E = ha + hb + Jab + Kab      3E = ha + hb + Jab − Kab

  
φaφb  or φaφb

 3Ψ = 0

 ε i  ε i

 ε i  hi

 Proof: Slater, J. C. Quantum Theory of Atomic Structure, Vol. I, McGraw-Hill: New York, 1960, p. 486.1
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stabilizations while those with MS = 0 are associated with two exchange stabilizations. 
This is algebraically summarized as  

!  

Mixing of the two MS = 
0 determinants,  Ψex(A) and 
Ψex(B), yields a triplet and 
a singlet wavefunction.  
The triplet energy must be 
equal to the energies for the 
MS = ±1  triplet 
wavefunctions that are 
representable as single 
determinants. 

States arising from degenerate orbitals with two or more electrons 

Molecules and ions with open shell electronic configurations are quite common in 
transition metal chemistry.  Before proceeding further with applications, however, let’s 
derive some formulas that allow us to work with characters in deriving states for multi-
electron configurations in degenerate orbital sets. 

When n-fold degenerate orbitals  belonging to irreducible representation Γi 
are occupied by, say, two electrons or two ‘holes’, one cannot simply evaluate a direct 
product to determine the states that derive from such configurations.  The n2-dimensional 
direct ‘squared’ representation (Γi ⊗ Γi) will have the n2 pairwise products of these 
orbitals, ! , as basis functions. The characters, ! , are just 
! . Now, if we are constructing permissible singlet/triplet state wavefunctions, the 
spatial part of the wavefunctions are symmetric/antisymmetric with respect to 
permutation of the electron labels while the spin function is antisymmetric/symmetric: 

!  

Egr=  2εa + 2εb + Jaa + Jbb + 4Jab − 2Kab
Eex

(3) =  2εa + εb + εc + Jaa + 2Jab + 2Jac + Jbc − Kab + Kac( )− Kbc
Eex
A= Eex

B =  2εa + εb + εc + Jaa + 2Jab + 2Jac + Jbc − Kab + Kac( )
Eex
A+B + Eex

A−B = Eex
A + Eex

B   ;  but Eex
A+B = Eex

(3)  ∴  Eex
(1) = Eex

A−B = Eex
A + Eex

B − Eex
(3)

Eex
(1) = 2εa + εb + εc + Jaa + 2Jab + 2Jac + Jbc − Kab + Kac( )+ Kbc  ; Eex(1) − Eex

(3) = +2Kbc

   {ϕ1,…,ϕn}

   
{ϕ1

2 ,…,ϕn
2 ,ϕ iϕ j ,i ≠ j} χΓi ⊗Γi

(R)
χΓi
2 (R)

1Ψ =

ϕ1(1)ϕ1(2)
!

ϕn(1)ϕn(2)
1
2
ϕi(1)ϕ j (2)+ϕ j (1)ϕi(2)( )  , i < j

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Symmetric" #$$$$$$$ %$$$$$$$

1
2

(α1β2 − β1α2 )

Antisymmetric" #$$ %$$
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!  

The set, ! , is the basis for an irreducible representation so the character for 
each operation within a class with respect to this basis will be the same, and independent 
of any choice of orthogonal linear combinations of these orbitals we make.  Suppose that 
we’ve singled out a particular operation R from each class and assume that we have 
chosen linear combinations of the orbitals such that the matrix for each R is diagonal:  2

!  

The combinations of basis functions that diagonalize R will generally be different for 
each operation, but the characters are, as always, the same for every member of a class.  
Operating on the spatial parts of the wavefunctions for both the singlets and the triplets, 

!  

!  

So the characters for the operations in the basis spanned by all the symmetric singlet 
( ! ) and antisymmetric triplet ( ! ) wavefunctions are 

!  

As noted above, the characters for the normal direct product basis are just  

!  

and since the basis functions are chosen so our class representative operations have 
diagonal matrices, the characters for the squares of the operations are diagonal as well, 

!  

3Ψ = 1
2

ϕi(1)ϕ j (2)−ϕ j (1)ϕi(2)( )  , i < j
Antisymmetric! "###### $######

 
α1α2

1
2
α1β2 + β1α2( )
β1β2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

Symmetric! "### $###

   {ϕ1,…,ϕn}

 

ϕ i
R⎯ →⎯ riϕ i  i = 1,…,n    ;    R =

r1 0 0
0 ! 0
0 0 rn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    ;    χ(R) = r1 +"+ rn

   

ϕ1(1)ϕ1(2) R⎯ →⎯ r1ϕ1(1) • r1ϕ1(2) = r1
2ϕ1(1)ϕ1(2)

!
ϕn(1)ϕn(2) R⎯ →⎯ rn

2ϕn(1)ϕn(2)

  

ϕ i (1)ϕ j (2) +ϕ j (1)ϕ i (2)( ) R⎯ →⎯ rirj ϕ i (1)ϕ j (2) +ϕ j (1)ϕ i (2)( )   i < j

ϕ i (1)ϕ j (2) −ϕ j (1)ϕ i (2)( ) R⎯ →⎯ rirj ϕ i (1)ϕ j (2) −ϕ j (1)ϕ i (2)( )   i < j

χ + χ−

χ + (R) = ri
2 + rirj

i< j

n

∑
i=1

n

∑     ;     χ− (R) = rirj
i< j

n

∑

χ 2 (R) = ri
i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2

= ri
2

i=1

n

∑ + rirj
i≠ j

n

∑ = ri
2

i=1

n

∑ + 2 rirj
i< j

n

∑

ϕi
R2⎯ →⎯ ri

2ϕi   i = 1,…,n     ;    R2 =
r1
2 0 0
0 ! 0
0 0 rn

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    ;    χ(R2 ) = ri
2

i=1

n

∑

 The linear combinations are the eigenvectors of R; r1, ... , rn are the eigenvalues. Since R is an orthogonal 2

(or unitary) diagonal matrix, for all ri, | ri | = 1; in general, ri could be a complex number, ri = eiα.
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If we take the sum and difference of the expressions for !  and !  and divide 
each by two, we obtain formulas for the antisymmetric and symmetric direct products,  

!  

where the context of the derivation given makes it clear that these two formulas are only 
defined when taking a direct product of a degenerate irreducible representation with itself 
and they’re used to handle two-electron (or two-hole) cases. 

It is easy to show that these formulae recover our results for cyclobutadiene.  The D4 
subgroup is again sufficient, since the (eg)2 configuration will generate only gerade states: 

�  

Formulas for three electrons (or three holes) in a 3-fold- or higher-degenerate set of 
orbitals can be derived using permutation group theory  and are3

�

and for four electrons (or four holes) in a 4-fold- or higher-degenerate set of orbitals: 

�

Applications to Ligand Field Theory 
An understanding of bonding in transition-metal complexes, particularly classical 

‘Werner’ complexes, demands that we account for electron-electron repulsion on an equal 
footing with the ‘quasi-independent electron’ terms implicit in our focus on molecular 
orbitals and their respective orbital energies.  In ligand-field theory, one seeks to correlate 
atomic (ion) state energies (i.e., Russell-Saunders terms) with molecular states built up 
from molecular orbital configurations.  In the ligand-field approach, the open-shell 
wavefunctions are assumed to retain their d-like character and the ligand contribution to 
the partially-filled orbitals is accounted for through their effect on orbital energy splitting 
and by treating the d-d repulsion energies as adjustable parameters (mainly the Racah 
parameter B) that will generally be smaller than in free ions because when the electrons 
are delocalized onto ligands, repulsions are lessened by the relief of their crowding into 

χ 2 (R) χ(R2 )

  

χ+ (R) = χ S=0(R) = 1
2
χ2(R) + χ(R2 )( )

χ− (R) = χ S=1(R) = 1
2
χ2(R) − χ(R2 )( )

  

D4 E 2C4 C2(C 4
2 ) 2C2

′ 2C2
′′

[E ⊗ E]– 1 1 1 −1 −1 = A2

[E ⊗ E]+ 3 −1 3 1 1 = A1 ⊕ B1 ⊕ B2

χ S=1 2 (R) = 1
3 χ 3(R) − χ(R3)( )

χ S=3 2 (R) = 1
6 χ 3(R) − 3χ(R)χ(R2 ) + 2χ(R3)( )

χ S=0 (R) = 1
12 χ 4 (R) − 4χ(R)χ(R3) + 3χ 2 (R2 )( )

χ S=1(R) = 1
8 χ 4 (R) − 2χ 2 (R)χ(R2 ) + 2χ(R4 ) − χ 2 (R2 )( )

χ S=2 (R) = 1
24 χ 4 (R) − 6χ 2 (R)χ(R2 ) + 8χ(R)χ(R3) − 6χ(R4 ) + 3χ 2 (R2 )( )

 See D. I. Ford, J. Chem. Ed., 49, 336-40 (1972). Appendix 2 below gives proof of the three electron 3

formulae. 
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relatively contracted d orbitals.  These are matters we will refer to only tangentially - our 
focus will remain on the symmetry-controlled characteristics of ligand field theory.

Let’s turn our attention to the electronic states of octahedrally-coordinated d2 ions, for 
which there are three possible configurations: (t2g)2, (t2g)1(eg)1, and (eg)2.  The singly-
excited (t2g)1(eg)1 configuration is handled easily: there are six assignments of the t2g 
electron (three orbitals, spin-up or spin-down) and four assignments of the eg electron, so 
the state wavefunctions from this configuration are written in terms of 24 determinants.  
The symmetries of the states are easily determined by taking the direct product, t2g ⊗ eg = 
1,3T1 ⊕ 1,3T2 where the left superscripts indicate that both singlets and triplets can be 
formed for each symmetry (with one electron each in t2g and eg, no Pauli Principle 
violations occur).  We’ll return to the issue of finding wavefunctions for these states 
below. 

!

To find the states arising from the (t2g)2 and (eg)2 configurations, the formulas derived 
in the preceding section are applied, the results of which are shown in the augmented 
character table above for the O group (the g symmetry of the d orbitals is understood).  If 
we correlate the d2 ion atomic states with these molecular states, the diagram shown here 
emerges.  This is a modified version of Figure 9.4 given in Cotton’s text.  Atomic states 
are at left, molecular orbital configurations are shown at far right.  The diagram also 
shows some energy splittings that are not given in the corresponding diagram found in 
Cotton’s text. In the Cotton’s Figure 9.4, the configurations are labeled as “∞ Strong 
interaction” – referring the the strength of the ligand-metal interaction.  Note that even in 
the strong ligand field limit, the electron-electron repulsion that causes the state splitting 
would still be present.  The figure given on the following page also includes energy 
splittings between some of the states on both sides of the diagram  – the origins of which 
shall be explained below. 

  

O E 8C3
3C2

(= C4
2 )

6C4 6 ′C2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1
E 2 –1 2 0 0 (2z2 – x2 − y2 ,x2 − y2 )
T1 3 0 –1 1 –1 (Rx , Ry , Rz );  (x,  y,  z)
T2 3 0 –1 –1 1 (xy,xz, yz)

T2 ⊗ E 6 0 −2 0 0          1,3T1 ⊕
1,3T2

T2 ⊗T2⎡⎣ ⎤⎦
−

3 0 −1 1 −1        3T1

T2 ⊗T2⎡⎣ ⎤⎦
+

6 0 2 0 2 ⇒   1A1 ⊕
1E ⊕ 1T2

E ⊗ E⎡⎣ ⎤⎦
−

1 1 1 −1 −1        3A2

E ⊗ E⎡⎣ ⎤⎦
+

3 0 3 1 1        1A1 ⊕
1E

!13



Now let’s find wavefunctions for some of these states.  For the (t2g)2 configuration, 
Hund’s rule predicts that the lowest energy state will be the triplet, 3T1g.  The MS = 1 
determinants are simple to illustrate graphically and are shown below the correlation 
diagram: 

To verify that these determinants do indeed belong to the T1g representation, we first 
apply the symmetry operations to the orbitals... 

!  

  

xy
C3⎯ →⎯ yz  ; yz

C3⎯ →⎯ xz  ; xz
C3⎯ →⎯ xy  ;  xy

C4z⎯ →⎯⎯ −xy ; xz
C4z⎯ →⎯⎯ yz  ; yz

C4z⎯ →⎯⎯ −xz

xy
C4z

2

⎯ →⎯⎯ xy ; xz
C4z

2

⎯ →⎯⎯ −xz  ; yz
C4z

2

⎯ →⎯⎯ − yz

xy
′C2(x= y)⎯ →⎯⎯⎯ xy ; xz

′C2(x= y)⎯ →⎯⎯⎯ − yz  ; yz
′C2(x= y)⎯ →⎯⎯⎯ −xz

!14



...then apply these to the determinants, which do indeed behave as T1g basis functions: 

!  

�

The determinants  are likewise the wavefunctions with MS = 
–1 for the 3T1g state.  The MS = 0 wavefunctions belonging to 3T1g are combinations of 
determinants: !  and ! . 
The reader may verify by direct operation that the 1T2g wavefunctions are the orthogonal 
combinations of the same determinants: ! , 
and ! .  Finally, we can construct a reducible representation spanned 

by determinants corresponding to two electrons in each one of the t2g orbitals. Reduction 
of that representation shows that these determinants form the 1A1g and 1Eg states.  

!  

The combinations of these determinants for these two states, derivation of which is left as 
an exercise, are as follows: 

xy xz
C3⎯ →⎯ yz  xy = − xy yz   ;  xy yz

C3⎯ →⎯ yz  xz = − yz  xz   ;

xz  yz
C3⎯ →⎯ xy xz                           ⇒  χ(C3) = 0

xy xz
C4z⎯ →⎯⎯ −xy yz = − xy yz   ;  xy yz

C4z⎯ →⎯⎯ −xy –xz = xy xz   ;  

xz  yz
C4z⎯ →⎯⎯ yz  –xz = xz  yz        ⇒  χ(C4 ) = 1

xy xz
C4z

2

⎯ →⎯⎯ xy –xz = − xy xz   ;  xy yz
C4z

2

⎯ →⎯⎯ xy –yz = − xy yz   ;  

xz  yz
C4z

2

⎯ →⎯⎯ –xz  –yz = xz  yz        ⇒  χ(C4
2 ) = −1

xy xz
′C2(x= y)⎯ →⎯⎯⎯ xy –yz = − xy yz   ;  xy yz

′C2(x= y)⎯ →⎯⎯⎯ xy –xz = − xy xz   ;  

xz  yz
′C2(x= y)⎯ →⎯⎯⎯ – yz  –xz = − xz  yz      ⇒  χ( ′C2 ) = −1

  | xyxz | , | xz yz | , and | xy yz |

  
1

2
(| xy  xz | + | xy  xz |), 1

2
(| xz  yz | + | xz  yz |)

  
1

2
(| xy  yz | + | xy  yz |)

  
1

2
(| xy  xz | − | xy  xz |), 1

2
(| xz  yz | − | xz  yz |)

  
1

2
(| xy  yz | − | xy  yz |)

O E 8C3 3C2(C4
2 ) 6C4 6 ′C2

| xy  xy | , | xz  xz | , | yz  yz | 3 0 3 1 1 1A1 ⊕
1E
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!  

Descent in symmetry as a tool for deriving electronic wavefunctions 
Let’s consider the states we derived for the (t2g)1(eg)1 configuration: 1,3T1g ⊕ 1,3T2g.  

Perhaps the simplest way to find determinantal wavefunctions for each of these is to 
proceed by lowering the symmetry (in this case, from Oh to D4h) and exploiting the 
symmetry correlations that apply to both the orbitals and the states.  When Oh symmetry 
is lowered to D4h symmetry, the correlation of d orbitals goes as illustrated here: 

!  
The parent (t2g)1(eg)1 configuration can yield four descendent configurations in D4h: 
(eg)1(a1g)1, (eg)1(b1g)1, (b2g)1(a1g)1, and (b2g)1(b1g)1, which respectively give rise to 1,3Eg , 
1,3Eg, 1,3B2g , and 1,3A2g states, as determined by evaluating direct products using the D4h 
orbitals.  However, the D4h descendent states must also correlate directly with their Oh 
parent states, 1,3T1g (Oh) → 1,3Eg , 1,3A2g (D4h), 1,3T2g (Oh) → 1,3Eg , 1,3B2g (D4h).  We can 
conclude that (b2g)1(a1g)1 and (b2g)1(b1g)1 configurations and their corresponding 
determinants in D4h must respectively derive from 1,3T2g and 1,3T1g in Oh.  We therefore 
know some representative wavefunctions for each of these two states,  

!  

Relative State Energies 
Now we will depart from a purely symmetry-based analysis and evaluate the energies 

of the triplet states and several of the singlet states for an octahedral d2 system.  Just as 
for the qualitative correlation diagram, the two limiting cases are the atomic ions and the 
strong ligand field limit.  Let’s begin with the strong-field limit: 

Ψ(1A1g ) = 1
3
xy  xy + xz  xz + yz  yz( )

Ψa (
1Eg ) = 1

6
2 xy  xy − xz  xz − yz  yz( )    ;    Ψb(

1Eg ) = 1
2
xz  xz − yz  yz( ).

MS MS

xy z2 1 xy  x2 − y2 1
3T2g : xy   z2 + xy  z2 0    3T1g : xy   x2 − y2 + xy  x2 − y2 0

xy z2 −1 xy  x2 − y2 −1

1T2g : xy   z2 − xy  z2 0 1T1g : xy   x2 − y2 − xy  x2 − y2 0
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!  

In practice, we are interested in the relative energies of these states, so let’s take energy 
differences to get the excited state energies relative to the ground state, E(3T1g, t2g2): 

!  

At this point, we need to recognize that these expressions are based on the assumption 
that each state arises from a single (strong field) configuration.  As ∆o → 0, the energies 
of the 3T2g, 3A2g, and the lowest 3T1g states must be equal since all three states correlate 
back to the same atomic state (3F). In the above expressions, however, we can see that the 
energy of the first two states is –3B relative to the the lowest 3T1g state as ∆o → 0.  The 
resolution of this difficulty lies in configuration interaction (CI).  There are two 3T1g 
states, for which we’ve written ligand-field single-determinant wavefunctions in the 
preceding discussion, and they must interact with each other since they are of the same 
symmetry.  The wavefunctions written above are very good approximations for large ∆o; 
the extent of CI is small when the energy difference between these like-symmetry 
determinants from two different configurations is large.  As ∆o → 0, however, these 
wavefunctions mix to yield the 3P atomic state and a component of the 3F atomic state.  
Since the 3T2g state is the only triplet state of that symmetry, it correlates back to the 3F 
atomic state without any mixing with other configurations.  We therefore choose the 
energy of the 3T2g state at ∆o = 0 as the zero of energy, so that at ∆o = 0, E(3T1g, t2g2) = 3B 
and E(3T1g, t2g1eg1) = 12B.  Now, we know that if the mixing between the two 3T1g states 
is accounted for, the lower of the two states must have E = 0 when ∆o = 0.  We can 
therefore write a secular equation that accounts for the CI and it must be of the form, 

E 3T1g ,t2g
2( ) = 2εt2 g + Jxy,xz − Kxy,xz = 2εt2 g + (A − 2B + C) − (3B + C) = 2εt2 g + A − 5B

E 3T2g ,t2g
1 eg

1( ) = εt2 g + εeg + Jxy,z2 − Kxy,z2
= εt2 g + εeg + (A − 4B + C) − (4B + C) = εt2 g + εeg + A − 8B

E 3T1g ,t2g
1 eg

1( ) = εt2 g + εeg + Jxy,x2 − y2 − Kxy,x2 − y2
= εt2 g + εeg + (A + 4B + C) − (C) = εt2 g + εeg + A + 4B

E 3A2g ,eg
2( ) = 2εeg + Jz2 ,x2 − y2 − Kz2 ,x2 − y2

= 2εeg + (A − 4B + C) − (4B + C) = 2εeg + A − 8B

E 1T2g ,t2g
2( ) = 2εt2 g + Jxy,xz + Kxy,xz = 2εt2 g + (A − 2B + C) + (3B + C) = 2εt2 g + A + B + 2C

E 1T2g ,t2g
1 eg

1( ) = εt2 g + εeg + Jxy,z2 + Kxy,z2
= εt2 g + εeg + (A − 4B + C) + (4B + C) = εt2 g + εeg + A + 2C

E 1T1g ,t2g
1 eg

1( ) = εt2 g + εeg + Jxy,x2 − y2 + Kxy,x2 − y2
= εt2 g + εeg + (A + 4B + C) + (C) = εt2 g + εeg + A + 4B + 2C

E 3T2g ,t2g
1 eg

1( ) − E 3T1g ,t2g
2( ) = εeg − εt2 g − 3B = Δo − 3B −3B

E 3A2g ,eg
2( ) − E 3T1g ,t2g

2( ) = 2εeg − 2εt2 g − 3B = 2Δo − 3B −3B

E 3T1g ,t2g
1 eg

1( ) − E 3T1g ,t2g
2( ) = Δo + 9B 9B

E 1T2g ,t2g
2( ) − E 3T1g ,t2g

2( ) = 6B + 2C ∆ o → 0⎯ →⎯⎯⎯ 6B + 2C

E 1T2g ,t2g
1 eg

1( ) − E 3T1g ,t2g
2( ) = Δo + 5B + 2C 5B + 2C

E 1T1g ,t2g
1 eg

1( ) − E 3T1g ,t2g
2( ) = Δo + 9B + 2C 9B + 2C

!17



!  

where x is the matrix element due to the interaction of the two 3T1g states.   The lower 4

energy solution is E = 0, which is satisfied if x2 = 36B2; the higher energy root is therefore 
E = 15B.  The interaction between the two states is due to electron-electron repulsion and 
is therefore independent of the ligand-field splitting, i.e., even for nonzero ∆o, the off-
diagonal entry in the secular equation is 6B: 

!  

Since the lower of the two 3T1g states is the ground state and we wish to express all the 
other states’ energies relative to the ground state, we must subtract E–(3T1g) from each.  In 
particular, for the triplet states we obtain 

!  

The 1T2g singlet determinants also mix via CI, and we know that as ∆o → 0, the 
energies of the higher 1T2g state and the 1T1g state both correlate to the 1G atomic state 
with energy 2εd + A + 4B + 2C.   We can therefore write a secular equation (applicable as 
∆o → 0) that accounts for the CI, 

!  

As before, x2 = 12B2 for all values of ∆o.  The general CI secular equation and is roots:   

12B − E x
x 3B − E

= 0 , when ∆ o = 0    ⇒     E2 − (15B)E + 36B2 − x2 = 0

∆ o+12B − E −6B
−6B 3B − E

= 0

E± (
3T1g )
B

= 1
2

∆ o

B
⎛
⎝⎜

⎞
⎠⎟ +15 ±

∆ o

B
⎛
⎝⎜

⎞
⎠⎟
2

+18 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟ + 225

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E+ (
3T1g )
B

–
E− (

3T1g )
B

= ∆ o

B
⎛
⎝⎜

⎞
⎠⎟
2

+18 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟ + 225

E 3T2g ,t2g
1 eg

1( )
B

−
E− (

3T1g )
B

= 1
2

∆ o

B
⎛
⎝⎜

⎞
⎠⎟ −15 +

∆ o

B
⎛
⎝⎜

⎞
⎠⎟
2

+18 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟ + 225

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E 3A2g ,eg
2( )

B
−
E− (

3T1g )
B

= 1
2 3

∆ o

B
⎛
⎝⎜

⎞
⎠⎟ −15 +

∆ o

B
⎛
⎝⎜

⎞
⎠⎟
2

+18 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟ + 225

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2C − E x
x B + 2C − E

= 0 , when ∆ o = 0    ⇒     x2 = 12B2   if  E+ = 4B + 2C.

 A symmetry argument is used here to deduce the off-diagonal matrix element. A direct calculation is given 4

in Ballhausen, C. J. Molecular Electronic Structures of Transition Metal Complexes, McGraw-Hill: New 
York, 1980, p. 58.

!18



!  

The reader may now compare these results with those published by Tanabe and 
Sugano in the eponymously-named diagram for a d2 ion: 

!  

 

B + 2C( ) − E − 12B

− 12B ∆ o+ 2C( ) − E
= 0  

E
B

⎛
⎝⎜

⎞
⎠⎟ ±

= 2 C
B

⎛
⎝⎜

⎞
⎠⎟
+

1
2

∆ o

B
⎛
⎝⎜

⎞
⎠⎟
+1± ∆ o

B
⎛
⎝⎜

⎞
⎠⎟

2

− 2 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟
+ 49

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E
B

⎛
⎝⎜

⎞
⎠⎟ ±

−
E− ( 3T1g )

B
⎛

⎝⎜
⎞

⎠⎟
= 2 C

B
⎛
⎝⎜

⎞
⎠⎟
− 7 + 1

2
∆ o

B
⎛
⎝⎜

⎞
⎠⎟

2

+18 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟
+ 225 ± 1

2
∆ o

B
⎛
⎝⎜

⎞
⎠⎟

2

− 2 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟
+ 49

E 1T1g ,t2g
1 eg

1( )
B

−
E− ( 3T1g )

B
⎛

⎝⎜
⎞

⎠⎟
= 2 C

B
⎛
⎝⎜

⎞
⎠⎟
+

9
2
+ 1

2
∆ o

B
⎛
⎝⎜

⎞
⎠⎟
+

∆ o

B
⎛
⎝⎜

⎞
⎠⎟

2

+18 ∆ o

B
⎛
⎝⎜

⎞
⎠⎟
+ 225

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Left: a reproduction of the Tanabe-Sugano diagram for a d2 ion; Right: Plots of the state energies for 
selected states of a d2 ion as derived in this document for the parameter choice C = 4.5B.



Appendix 1: Relations Involving Coulomb and Exchange Integrals 
p orbitals definitions 

!   

d orbitals 

!

Energies of real d orbital integrals in terms of Racah parameters 

!  

J0,0 = Jz ,z = Jx,x = J y,y                                    Ji, j = ∫ϕi
*(1)ϕ j

*(2) 1 r12( )ϕi(1)ϕ j (2)dτ1dτ 2;

J1,1 = J−1,−1 = J−1,1 = 1 2( )(Jx,x + Jx,y )             Ki, j = ∫ϕi
*(1)ϕ j

*(2) 1 r12( )ϕi(2)ϕ j (1)dτ1dτ 2

J1,0 = J−1,0 = Jx,y = Jx,z = J y,z

K1,−1 = K−1,1 = 2Kx,y = Jx,x − Jx,y

K1,0 = K−1,0 = Kx,y = Kx,z = Ky,z

  

J0,0 = J
z2 ,z2

J2,2 = J−2,−2 = J2,−2 = 1 2( )(Jxy,xy + J
x2 − y2 ,xy

)

J2,1 = J−2,−1 = J2,−1 = J−2,1 = Jxy,xz

J2,0 = J−2,0 = J
xy,z2

J1,1 = J−1,−1 = J1,−1 = 1 2( )(Jxz ,xz + Jxz , yz )
J1,0 = J−1,0 = J

xz ,z2

K1,−1 = 2Kxz , yz = Jxz ,xz − Jxz , yz

K2,−2 = 2K
xy,x2 − y2 = Jxy,xy − J

xy,x2 − y2

K2,1 = K−2,−1 = Kxy,xz − ∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ
x2 − y2 (2)dτ1dτ2

K2,−1 = K−2,1 = Kxy,xz + ∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ
x2 − y2 (2)dτ1dτ2

K2,0 = K−2,0 = K
xy,z2

K1,0 = K−1,0 = K
xz ,z2

  

Jxy,xy = Jxz ,xz = J yz , yz = J
z2 ,z2 = J

x2 − y2 ,x2 − y2                      A+ 4B + 3C

Jxz , yz = Jxy, yz = Jxy,xz = J
x2 − y2 , yz

= J
x2 − y2 ,xz

                    A− 2B + C

J
xy,z2 = J

x2 − y2 ,z2                                                               A− 4B + C

J
yz ,z2 = J

xz ,z2                                                                    A+ 2B + C

J
x2 − y2 ,xy

                                                                          A+ 4B + C

Kxy, yz = Kxz , yz = Kxy,xz = K
x2 − y2 , yz

= K
x2 − y2 ,xz

        3B + C

K
xy,z2 = K

x2 − y2 ,z2                                                      4B + C

K
yz ,z2 = K

xz ,z2                                                           B + C

K
x2 − y2 ,xy

                                                           C

∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ
x2 − y2 (2)dτ1dτ2        −3B
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Energies of complex d orbital integrals in terms of Racah parameters 

!  

For 1st-row transition metal ions, Racah parameters B and C have typical ranges: 
B ≈ 650 –1100 cm–1, C ≈ 3800 – 5500 cm–1.  (State energy differences don’t involve A.) 

We’ve chosen to express the Coulomb and Exchange integrals in terms of Racah 
parameters, but the Slater-Condon parameters are also commonly encountered.  Slater-
Condon parameters are integrals involving Rnl, the radial parts of the hydrogenic orbitals, 
and defined by 

!  

  

J0,0                                                    A+ 4B + 3C
J2,2 = J−2,−2 = J2,−2                           A+ 4B + 2C
J2,1 = J−2,−1 = J2,−1 = J−2,1               A− 2B + C
J2,0 = J−2,0                                        A− 4B + C
J1,1 = J−1,−1 = J1,−1                           A+ B + 2C
J1,0 = J−1,0                                        A+ 2B + C
K1,−1                                             6B + 2C
K2,−2                                    C
K2,1 = K−2,−1                                6B + C
K2,−1 = K−2,1                        C
K2,0 = K−2,0                                    4B + C
K1,0 = K−1,0                                   B + C

Fk ≡ e2 r1
2

0

∞

∫ r2
2

0

∞

∫
r<
k

r>
k+1 Rnl (r1)

2
Rnl (r2 )

2
dr2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dr1   ;   

r<
k

r>
k+1 =

r1
k

r2
k+1  if  r2 > r1

r2
k

r1
k+1  if  r1 > r2

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

and (in the d-shell):  F0 ≡ F
0  , F2 =

F 2

49
 , F4 =

F 4

441
The Racah parameters are related to the Slater-Condon parameters by

A = F0 − 49F4

B = F2 −5F4

C = 35F4
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Appendix 2: States from three electrons in three or more degenerate orbitals 

We can extend the method used to derive 2-electron antisymmetric direct product 
formulae to handle 3-electron configurations involving 3 or more degenerate orbitals. If 
we are constructing permissible quartet state (S = 3/2) wavefunctions, the wavefunction 
can be factored into separate spatial and spin parts, and just as for the two-electron triplet 
wavefunctions case, the spatial part of the wavefunctions is antisymmetric with respect to 
permutation of the electron labels while the spin functions are symmetric: 

!  

when operated on by operation R, each of the terms in the spatial wavefunction yield the 
same eigenvalue: rirjrk. The set is the basis for an irreducible representation so 
the character for each operation within a class with respect to this basis will be the same, 
and independent of any choice of orthogonal linear combinations of these orbitals we 
make.  As before (p. 11), we suppose that we’ve singled out a particular operation R from 
each class and have chosen a linear combination of the orbitals such that the matrix for 
each R is diagonal: 

!  

Let’s show that the formula given on p. 12, ! , 
yields just this result: 

!  

Which, when we take the sum and divide by 6, yields the desired result for ! .  
Using the first and last of these equations, we obtain 

!  

4Ψ =

 1
6
ϕi(1)ϕ j (2)ϕk (3)−ϕi(2)ϕ j (1)ϕk (3)                    (

−  ϕi(1)ϕ j (3)ϕk (2)−ϕi(3)ϕ j (2)ϕk (1)  ,  i < j < k

 +  ϕi(2)ϕ j (3)ϕk (1)+ϕi(3)ϕ j (1)ϕk (2))                      

Antisymmetric! "########## $##########

 

α1α2α3  3 2
1
3
α1α2β3 +α1β2α3 + β1α2α3( )  1 2

1
3
α1β2β3 + β1α2β3 + β1β2α3( ) −1 2

β1β2β3 −3 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

                     Symmetric                 MS! "######## $########

   {ϕ1,…,ϕn}

 χ− (R) = χ 3 2 (R) = rirjrk
i< j<k

n

∑

χ S=3 2 (R) = 1
6 χ 3(R) − 3χ(R)χ(R2 ) + 2χ(R3)( )

                                χ 3(R) = ri
i

n

∑⎛⎝⎜
⎞
⎠⎟

3

= ri
3

i

n

∑ + 3 ri
2rj

j≠i

n

∑
i

n

∑ + 6 rirjrk
k≠i
k≠ j

n

∑
j≠i

n

∑
i

n

∑

−3χ(R)χ(R2 ) = −3 ri
i

n

∑⎛⎝⎜
⎞
⎠⎟

ri
2

i

n

∑⎛⎝⎜
⎞
⎠⎟
= −3 ri

3

i

n

∑ − 3 ri
2rj

j≠i

n

∑
i

n

∑

                          + 2χ(R3) = +2 ri
3

i

n

∑

χ 3/2 (R)

1
3 χ 3(R) − χ(R3)( ) = ri

2rj
j≠ i

n

∑
i

n

∑ + 2 rirjrk
k≠ i
k≠ j

n

∑
j≠ i

n

∑
i

n

∑
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The reader may verify that with a set n degenerate orbitals one can construct n(n – 1)(n – 

2)/2 distinct determinants with MS = 1/2 (or – 1/2) in which three different orbitals (φi, φj, 
φk) are occupied and n(n – 1) distinct determinants with MS = 1/2 (or – 1/2) in which one 
orbital (φi) is doubly occupied and one orbital (φj) is singly occupied.  The characters for 
each of the determinant of the first type are ! and those of the second type have 
characters ! .  The formula ! follows from taking the sum 
over all the basis determinants of both types.  

rirjrk
ri
2rj χ1/2 (R) = 1

3 χ 3(R) − χ(R3)( )
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Appendix 3: Bosons 

As it happens, vibrational excitations behave like bosons, among which are deuterons, 
alpha particles, and other integer-spin particles.  In solids, vibrational excitations are 
customarily given a particle-like name: phonons.  The wavefunction for a system of two 
or more bosons must retain the same sign any time we permute the coordinates of any 
two particles,  

! . 
Consider, for example, and overtone or combination energy level in which a molecule 

has two quanta of vibrational excitation.  In the harmonic approximation, the vibrational 
Hamiltonian for a molecule can be expressed as a sum of separate contributions from 
each normal mode, 

!  

and therefore the vibrational wavefunctions are a product of individual harmonic 
oscillator wavefunctions for each mode and the vibrational energy is sum of the energies 
of individual modes. Consider, for example, an overtone or combination energy level in 
which a molecule has two quanta of vibrational excitation, one each in the jth and kth 
modes,  

!  

where mode quantum numbers, ni, are indicated in parentheses. 
Recall that the ground state (ni = 0) vibrational wavefunctions all transform as the 

totally symmetric representation, so the symmetry of a combination level involving 
nondegenerate modes is given by the direct product, .  If the jth and kth modes are 
members of a degenerate representation, Γp, three wavefunctions are possible, 𝜓j(2), 
𝜓k(2), and 𝜓j(1)𝜓k(1).  There is, of course, no physical distinction between the functions 
𝜓j(1)𝜓k(1) and 𝜓k(1)𝜓j(1).  Thus, the wavefunctions for a degenerate overtone 
vibrational states form the basis for the symmetric direct product representation 
[ ]+, the characters of which are determined using the formula derived on p. 12,  

! . 

For three quanta, the formula is  5

! . 

   Ψ(1,2,…i,…, j,…N ) = +Ψ(1,2,… j,…,i,…N )

H vib = H k
k=1

3N−6

∑ ;   H k = − !
2

2
∂ 2

∂Qk
2 +

1
2
λkQk

2

Ψvib = ψ i 0( )
i≠ j ,k

3N−6

∏⎧⎨
⎩

⎫
⎬
⎭
ψ j 1( )ψ k 1( )    ;   E = 1

2
hν i

i≠ j ,k

3N−6

∑ + 3
2
h(ν j +ν k )

Γ j ⊗Γ k

Γ p ⊗Γ p

χ + (R) = 1
2 χ 2(R)+ χ(R2 )( )

χ + (R) = 1
6 χ 3(R)+ 3χ(R)χ(R2 )+ 2χ(R3)( )

 A more complete and general treatment is found in Wilson, E.B. Jr., Decius, J.C., Cross, P.C., Molecular 5

Vibrations; The Theory of Infrared and Raman Vibrational Spectra, Dover: New York, 1980, pp. 151-5.
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