Nuclear Magnetic Resonance

Chem 634 T. Hughbanks

Books, Web sites, etc.

- ✿ J. Iggo, "NMR Spectroscopy in Inorganic Chemistry"
- J. K. M. Sanders and B K. Hunter, "Modern NMR Spectroscopy; A Guide for Chemists"
- ✿ H. Friebolin, "Basic One- and Two-Dimensional NMR Spectroscopy"
- D. Canet, "Nuclear Magnetic Resonance; Concepts and Methods"
- E. A. V. Ebsworth, D. W. H. Rankin, S. Cradock, "Structural Methods in Inorganic Chemistry", Chapter 2.
- **A** R. S. Drago, "Physical Methods", Chapters 7, 8, and 12.

•

8

- For serious NMR students, some excellent on-line resources <u>http://www.spectroscopynow.com/coi/cda/landing.cda?</u>
 <u>chld=5&type=Education</u>
- Guillermo Moyna's good NMR lectures (from which I've borrowed some)
 <u>http://208.7.154.206/gmoyna/NMR_lectures/NMR_lectures.html</u>
 - A good site for NMR basics: <u>http://www.cis.rit.edu/htbooks/nmr/</u> inside.htm
 - A good site for basic organic spectra and some problems: <u>http://</u> www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm

An introduction to modern NMR spectroscopy

More Advanced Inorganic/ Organometallic Reference

NMR is Broadly Applicable

- Nuclear Magnetic Resonance
- Applies to atoms and molecules with nuclear spin quantum numbers greater than zero.
- Applied magnetic field induces Zeeman splittings in spin states, and energy is absorbed from radiation when the frequency meets the resonance condition, $hv = \Delta E \propto \mu_N \times H_0$
- $1/\lambda \sim 10^{-3} \text{ cm}^{-1}$, $v = c/\lambda \sim 25-500 \text{ MHz}$

Spectroscopy: The Big Picture

NMR

				SP	ECTRAL	RANGE			Г	<u>لمر</u>
Υ-ray X	lard S -ray X	Soft Vac -ray L	uum Ne	ear Visi V blue	ble Ne red II	ear Mi R <mark>,</mark> IF	d Far R IR	Sub- mm- mmw wave	Micro- F wave	Radio- wave
← < 0.1 Å	5 Å	100 Å 10 nm	2000 Å 200 nm	400 nm	0.7 µm 700 nm	2.5 µm 2500 nm	25 µm	1 mm	10 cr	n→}λ
> 10 ⁹	2×10 ⁷	10 ⁶	5×10 ⁴	2.5×10 ⁴	1.4×10 ⁴	4000	400	10	0.1	(cm ⁻¹)
12×10 ⁹	240×10 ⁶	12×10 ⁶	600×10 ³	300×10 ³	170×10 ³	48×10 ³	5×10 ³	120	1.2	E (J mol ⁻¹)
120 000	2400	120	6	3	1.7	0.5	0.05	0.001	0.0000	1 (eV)
3×10 ¹	⁹ 6×10 ¹⁷	′ 3×10 ¹⁶	1.5×10 ¹⁵	7.5×10 ¹⁴	4×10 ¹⁴	1.2×10 ¹⁴	1.2×10 ¹³	3×10 ¹¹	3×10 ⁵	ο ν (Hz)
	XRF	۱ ـــــــــ	Electr	onic —		1		Rotational		4
Mössbauer	XPS	UPS			}	- Vibratior	nal		EPR	NQR
GEI	^D XRD			- SPECTI	ROSCOPI	C TECHN	IIQUES —			
← Nuclea	r energies		Chem	ical energ	ies		Molecula	⁻ energies	Spin energ	jies

Basic Aspects of the NMR Phenomenon

Zeeman interaction for proton

If a proton is placed in a magnetic field, $\mathbf{H} = H_z \hat{\mathbf{z}}$, the proton's energy will depend on its m_l value. The Zeeman interaction between the applied field and the magnetic moment of the proton is illustrated as:

Sensitivity, Populations

Even at 300 MHz (H = 7.05 T), the population difference of the two spin states for a proton is ~10⁻⁵. Since other nuclei have smaller gyromagnetic ratios, they exhibit even smaller differences at the same field.

$$\frac{N_{\beta}}{N_{\alpha}} = e^{-\Delta E/k_{B}T} \simeq 1 - \frac{\Delta E}{k_{B}T} = 0.99999135$$
$$(H = 7.05\text{T}; T = 298\text{K})$$

Time Scale

- NMR is generally considered to be a slow technique, with a characteristic time scale, τ ~ 10⁻⁷ s. (Recall, 1/τ = ν ~ 100 MHz.)
- Molecular events occurring in times much faster than 10⁻⁴ s or less are "time averaged" in NMR (a more careful distinction to come later).

Miscellaneous Familiar Matters

- For solution spectra, the immediate chemical/structural information is conveyed by the *chemical shifts* and the *spin-spin couplings*.
- Nuclei with I >1/2 have quadrupole moments even solution spectra are broadened when such nuclei experience electric field gradients.
- The ratios of resonance frequencies for a given field are equal to the ratios of the gyromagnetic constants: $\gamma_A/\gamma_B = v_A/v_B$. For example, on a "300 MHz spectrometer", ¹³C spectra occur at 75.44 MHz since $\gamma_{^{13}C}/\gamma_{^{1}H} = \frac{6728}{26,753} = \frac{75.44}{_{300}}$. (It would be better to call a "300 MHz spectrometer" a 7.046 T spectrometer.)

Chemical Shift Scale

$$\delta = \frac{v - v_{\text{TMS}}}{v_{\text{TMS}}} \qquad \qquad \delta_{\text{ppm}} = 10^6 \times \frac{v - v_{\text{TMS}}}{v_{\text{TMS}}}$$

- In order to make NMR data independent of the field used, chemical shifts are reported relative to a standard (usually TMS for ¹H and ¹³C).
- Since the shifts are generally small, they are always given in parts per million (ppm).

Peak differences often in Hz

• It turns out to be more physically useful to think about differences between energies of NMR transitions in terms of differences in frequencies, e.g., $v_2 - v_1$.

$$\begin{split} \delta_2 - \delta_1 &= 10^6 \times \frac{v_2 - v_{\text{TMS}}}{v_{\text{TMS}}} - 10^6 \times \frac{v_1 - v_{\text{TMS}}}{v_{\text{TMS}}} = 10^6 \times \frac{v_2 - v_1}{v_{\text{TMS}}} \\ \Rightarrow \quad v_2 - v_1 &= \frac{v_{\text{TMS}}}{10^6} (\delta_2 - \delta_1) \end{split}$$

Resonance, Larmor Frequency

$$\Delta E = \gamma_N \hbar H_0 = h \nu_L$$

(γ_N is the gyromagnetic ratio for the nucleus in question)

- v_L is the Larmor frequency: $v_L = \left| \frac{\gamma_N}{2\pi} \right| H_0$; $\omega_0 = \gamma_N H_0$ including chemical shift: $v = \left| \frac{\gamma_N}{2\pi} \right| H_0 (1 - \sigma)$
- NMR transitions are stimulated (absorption and emission) by an additional oscillating (electro)magnetic field, H₁, is applied at the Larmor frequency.
- Shielding is proportional to the applied field hence the units of chemical shift: ppm.

More Familiar Matters

Resonance frequencies for two
interacting nuclei are given by

$$E = -h\sum_{A} v_{A}m_{A} + h\sum_{A < B} J_{AB}m_{A}m_{B}$$

where m_A is the *z*-component the spin on *A*, and J_{AB} is the coupling constant for *A* interacting with *B*.

• This expression applies when chemical shift differences are much greater than couplings, $|v_A - v_B| >> J_{AB}$.

Basic Spectra - ¹H

Basic Spectra - ¹H

Basic Spectra - ¹H

Notation for labeling nuclei

- Chemically and magnetically equivalent nuclei given the <u>same</u> label. (e.g., A)
- Chemically, but not magnetically equivalent nuclei given primes. (e.g, AA' for two, AA'A'' for three, etc.)
- Nuclei with small chemical shift differences (smaller or comparable to coupling between them) given alphabetically close labels (e.g., A, B, C, D, etc.)
- Inequivalent nuclei with large chemical shift differences given alphabetically distant labels (e.g., AMX, for three)
- One can describe a mix of types of nuclei
 - A_2BMXY is a six-spin system with two equivalent nuclei (A), strongly coupled (compared to Δv_{AB}) to one nucleus B, weakly coupled to one nucleus M (vs Δv_{AM}) and very weakly coupled to X & Y
 - M is weakly coupled to all nuclei
 - B is only strongly coupled to A
 - X & Y are strongly coupled to each other and weakly to all other nuclei

A (disastrous) problem from the 2008 Final

On the next slide is a fairly accurate simulation of the line positions and intensities observed for the ¹H NMR spectrum of methylethylketone, CH₃COCH₂CH₃, measured on an old continuous-wave 60 MHz (1.4093 T) NMR instrument (the TMS reference is not shown). Assign the spectrum, and in the blank space below the spectrum, draw an analogous stick-like spectrum that shows, as accurately as possible, what the spectrum would look like if recorded on a more modern 300 MHz (7.0463 T) instrument. Be careful to accurately place the positions of the peaks and their relative intensities.

¹H NMR, 300 MHz

An "unknown" example - ¹H

An "unknown" example - ¹H

An "unknown" example - ¹H С В C_8H_9CIO (¹H; 250.13 MHz) С В 4 x А А 7.0 6.5 6.0 5.5 7.5 5.0 4.5 3.5 ppm 4.0

An "unknown" example - ¹H

Even AMX can be a little complicated

FIGURE 12.12. 100-MHz spectrum of styrene oxide (25% in CCl₄). The part of the spectrum due to aromatic protons is not shown.

Basic Spectra - ¹³C

Chemical shifts of ¹³C nuclei in organic compounds.

An "unknown" example - ¹H & ¹³C

Origins of Chemical Shifts (Shielding)

$$H = H_0(1 - \sigma) \quad ; \quad \sigma = \sigma_d + \sigma_p$$

$$\sigma_d(zz) = \frac{e^2}{2mc^2} \langle 0 | \frac{x^2 + y^2}{r^2} | 0 \rangle$$

$$\sigma_p(zz) = -\left(\frac{e\hbar}{2mc}\right)^2 \sum_n \left\{ \frac{\langle 0 | L_z | n \rangle \langle n | \frac{2L_z}{r^3} | 0 \rangle}{E_n - E_0} + \frac{\langle 0 | \frac{2L_z}{r^3} | n \rangle \langle n | L_z | 0 \rangle}{E_n - E_0} \right\}$$

- Shielding consists of a diamagnetic (σ_d) and paramagnetic (σ_p) response of the electrons to the applied field.
- σ_d arises from a first-order effect, reflecting the electron density distribution in the ground state. (Often dominant in proton spectra.)
- σ_p arises from a second-order mixing of paramagnetic excited states into the ground state by the applied field (much like TIP). Often dominant for other nuclei.

Nucleus	Ι	g _N	γ_N (radians sec ⁻¹ · gauss ⁻¹)	Nucleus	Ι	g_N S	γ_N (radians sec ⁻¹ · gauss ⁻¹)	Q (10 ⁻²⁴ cm ²)
H ¹	1/2	5.585	26,753	D ²	1	0.857	4,107	0.00274
C ¹³	1/2	1.405	6,728	Li ⁷	3/2	2.171	10,398	0.02
N^{15}	1/2	-0.567	-2,712	B^{11}	3/2	1.791	8,853	0.00355
F^{19}	1/2	5.257	25,179	N^{14}	1	0.403	1,934	0.02
4.7% Si ²⁹	1/2	-1.111	-5,319	O ¹⁷	5/2	-0.757	-3,628	-0.0265
00% P ³¹	1/2	2.263	10,840	Na ²³	3/2	1.478	7,081	+1.00 or
D 7 0/ D 1 95	1 /2	1 1 2 0	5 7 4 7					-0.836^{a}
5./% Pt ²⁵	1/2	1.120	5,/4/	S ³³	3/2	0.429	2,054	-0.064
				Cl ³⁵	3/2	0.548	2,624	-0.079
				Cl ³⁷	3/2	0.456	2,184	-0.062
				K ³⁹	3/2	0.261	1,250	0.113

Nuclei with no spin: $C^{12} O^{16} O^{18} Si^{28} S^{32} Ca^{40}$ ^a The quadrupole

^a The quadrupole moment of Na²³ is uncertain.

Relaxation

Iggo, Sec .1-10

- Refers to processes by which spins nonradiatively lose energy
- The phenomenon of relaxation is crucial to NMR. In the (obsolete) continuous wave method, signals would rapidly saturate because spin populations can become equal. In FT-NMR, relaxation is necessary to bring system to equilibrium between pulses.
- T₁: spin-lattice relaxation, dissipation of energy to surroundings (non-spin degrees of freedom)
- T_2 : spin-spin relaxation, transfer of energy to other spins. $T_1 \ge T_2$
- Quadrupole moments, Q, cause T₂ to shorten greatly, leading to line-broadening

Correlation times and Relaxation

Relaxation effects depend on the frequency spectrum of the local fields experienced by a nuclear spin. The correlation time, τ_c , is a characteristic time scale of fluctuations (due to molecular tumbling ~ rotational Brownian motion) in solution. Relaxation is most efficient when $1/\tau_c \sim v$.

Isotope	Spin	Natural abundance/ %	Magnetogyric ratio ⁶ / 10 ⁷ rad T ⁻¹ s ⁻¹	Relative NMR frequency/ MHz	Relative receptivity	Quadrupole moment ^b / 10 ⁻²⁸ m ²
² H ^c	1	0.015	4.1066	15.4	1.5×10^{-6}	2.8×10^{-3}
7r :	2/2	7.4	3.93/1	14.7	2.7×10^{-1}	-6×10^{-2}
PR-	3/2	92.0	2 7506	14 1	1.4×10^{-2}	5×10^{-2}
10D	3/2	100.0	- 3.7390	14.1	3.9×10^{-3}	85×10^{-2}
	3/2	19.0	2.0740	22.1	1.3×10^{-1}	4.1×10^{-2}
14NIC	3/2	80.4	1 0229	7 2	1.0×10^{-3}	1×10^{-2}
170	5/2	99.0	2 6270	12.6	1.0×10^{-5}	-26×10^{-2}
23NI-	3/2	0.037	- 3.02/9	26.5	0.1×10^{-2}	-2.0×10^{-1}
1Na 25	5/2	100.0	1.620	20.5	9.3×10^{-4}	2.2×10^{-1}
27 A 1	5/2	10.1	- 1.039	26.1	2.7×10^{-1}	1.5×10^{-1}
330	3/2	100.0	0.9700	20.1	1.7×10^{-5}	1.5×10^{-2}
35 01	3/2	0.70	2.055	1.1	1.7×10^{-3}	-3.3×10^{-1}
37 CI	3/2	75.5	2.0240	9.8	5.0×10^{-4}	-7.0×10^{-2}
39vd	3/2	24.5	2.1042	0.2	1.7×10^{-4}	-7.9×10^{-2}
43	3/2	93.1	1.2490	4.7	4.0×10^{-6}	4.9 × 10 ^{-1e}
45 Ca	7/2	0.15	- 1.8025	24.3	3.0×10^{-1}	-22×10^{-1}
5C	5/2	100.0	0.5001	24.5	3.0×10^{-4}	-2.2×10^{-1}
49-72	3/2	1.5	-1.5105	5.6	1.3×10^{-4}	2.9×10^{-1}
Slard	7/2	5.5	-1.5109	26.2	2.1×10^{-1}	2.4×10^{-2}
53	1/2	99.0	1.0433	20.5	3.6×10^{-5}	-3×10^{-2}
55 M-	5/2	9.0	-1.512	24.7	1.8×10^{-1}	4×10^{-1}
59 Co	3/2	100.0	6.008	24.7	1.0×10^{-1}	3.8×10^{-1}
61 NI:	2/2	1.2	0.317	23.0	4.1×10^{-5}	1.6×10^{-1}
63	3/2	1.2	- 2.394	0.7	4.1×10^{-2}	1.0×10^{-1}
65 Cu	3/2	09.1	7.0974	20.5	2.5×10^{-2}	-2.1×10^{-1}
67 g	3/2	30.9	7.0031	20.4	3.0×10^{-4}	-2.0×10^{-1}
69 C	5/2	4.1	1.0/08	0.3	1.2×10^{-2}	1.0×10^{-1}
71 Ca	3/2	00.4	0.4323	24.0	4.2×10^{-2}	1.7×10^{-1}
73 Ca	3/2	39.0	0.1/31	30.0	1.1×10^{-4}	-1.8×10^{-1}
75 A -	9/2	1.8	-0.9357	3.5	1.1×10^{-2}	-1.0×10
79D-	3/2	100.0	4.393	25.1	2.5×10^{-2}	2.7×10^{-1}
	3/2	50.5	0.1228	23.1	4.0×10^{-2}	3.7×10^{-1}
Br	3/2	49.5	7.2468	27.1	4.9×10	3.1×10

 Table 2.2
 NMR properties of some quadrupolar nuclei^a
Isotope	Spin	Natural abundance/ %	Magnetogyric ratio ^b / 10 ⁷ rad T ⁻¹ s ⁻¹	Relative NMR frequency/ MHz	Relative receptivity	Quadrupole moment ^b / 10 ⁻²⁸ m ²
⁸⁷ Rb ^d	3/2	27.9	8.7807	32.8	4.9×10^{-2}	1.3×10^{-1}
⁸⁷ Sr	9/2	7.0	-1.163	4.3	1.9×10^{-4}	3×10^{-1}
⁹¹ Zr	5/2	11.2	-2.4959	9.3	1.1×10^{-3}	-2.1×10^{-1f}
93Nb	9/2	100.0	6.564	24.5	4.9×10^{-1}	-2.2×10^{-1}
⁹⁵ Mo	5/2	15.7	1.750	6.5	5.1×10^{-4}	$\pm 1.2 \times 10^{-1}$
⁹⁷ Mo	5/2	9.5	-1.787	6.7	3.3×10^{-4}	±1.1
⁹⁹ Ru	5/2	12.7	1.2348	4.6	1.5×10^{-4}	7.6×10^{-2}
¹⁰¹ Ru	5/2	17.1	1.383 8	5.2	2.8×10^{-4}	4.4×10^{-1}
¹⁰⁵ Pd	5/2	22.2	-1.23	4.6	2.5×10^{-4}	8×10^{-1}
¹¹⁵ In ^d	9/2	95.7	5.8908	22.0	3.4×10^{-1}	8.3×10^{-1}
¹²¹ Sb	5/2	57.3	6.4355	24.0	9.3×10^{-2}	-2.8×10^{-1}
¹²³ Sb	7/2	42.7	3.4848	13.0	2.0×10^{-2}	-3.6×10^{-1}
¹²⁷ I	5/2	100.0	5.3817	20.1	9.5×10^{-2}	-7.9×10^{-1}
¹³¹ Xe ^c	3/2	21.2	2.206	8.2	5.9×10^{-4}	-1.2×10^{-1}
133Cs	7/2	100.0	3.5277	13.2	4.8×10^{-2}	-3×10^{-3}
137Ba d	3/2	11.3	2.988	11.1	7.9×10^{-4}	2.8×10^{-1}
139La	7/2	99.9	3.801	14.2	6.0×10^{-2}	2.2×10^{-1}
¹⁷⁷ Hf	7/2	18.5	1.081	4.0	2.6×10^{-4}	4.5
¹⁷⁹ Hf	9/2	13.8	-0.679	2.5	7.4×10^{-5}	5.1
¹⁸¹ Ta	7/2	99.99	3.22	12.0	3.7×10^{-2}	3
¹⁸⁵ Re	5/2	37.1	6.077	22.7	5.1×10^{-2}	2.3
¹⁸⁷ Re	5/2	62.9	6.138	22.9	8.8×10^{-2}	2.2
189Os C	3/2	16.1	2.096	7.8	3.9×10^{-4}	8×10^{-1}
¹⁹¹ Ir	3/2	37.3	0.4643	1.7	9.8×10^{-6}	1.1
¹⁹³ Ir	3/2	62.7	0.5054	1.9	2.1×10^{-5}	1.0
¹⁹⁷ Au	3/2	100.0	0.4625	1.7	2.6×10^{-5}	5.9×10^{-1}
²⁰¹ Hg ^c	3/2	13.2	-1.7776	6.6	1.9×10^{-4}	4.4×10^{-1}
²⁰⁹ Bi	9/2	100.0	4.2342	16.2	1.4×10^{-1}	-3.8×10^{-1}

Table 2.2 NMR properties of some quadrupolar nuclei (cont'd)

•

^a In general, radioactive nuclei, the rare gases, and the lanthanides are omitted. All the lanthanides except cerium have potentially useful NMR isotopes. ^b G.H. Fuller, J. Phys. Chem. Ref. Data, 5, 835 (1976), except where otherwise stated. ^c A spin 1/2 isotope also exists. ^d Other less important quadrupolar isotopes also exist. ^c R. Neumann, F. Träger, J. Kowalski and G. zu Putlitz, Z. Physik, A279, 249 (1976). ^f S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen and F. Träber, Z. Physik, A286, 125 (1978). ^g C. Brévard and P. Granger, J. Chem. Phys., 75, 4175 (1981).

The NMR Experiment

http://www-keeler.ch.cam.ac.uk/lectures/

Chapter 3: The Vector Model

Chapter 4: Fourier Transformation and Data Processing

Chapter 5: How the Spectrometer Works

NMR Spectrometers

- Typical now are 5-10T magnets must be very stable and highly homogeneous
- RF transmitter and pick-up coils
- Decoupler
- Recording device, computer for Fast Fourier Transforms, FID storage

More Experimental Aspects

- Must lock on a resonance frequency of a nucleus that is not the one being measured to maintain stability. ¹H NMR uses ²H (i.e., D).
- Probe is at the center of the field and consists of a sample holder with coils. The radiofrequency of the nucleus under investigation is applied to the sample via the transmitter coil, and, at resonance, a voltage is induced in the receiver coil which detects sample magnetization.
- The sample is spinning during the experiment to ensure optimum field homogeneity. The sample holder acts as a turbine driven by compressed air.
- Most instruments have another coil used as decoupler and a variable temperature device.

NMR Instrumentation

Magnet - Normally superconducting. Some electromagnets and permanent magnets (EM-360, EM-390) still around.

- Frequency generator Creates the alternating current (at ω_r) that induces H_1 . Continuous wave or pulsed.
- **Detector** Subtracts a constant base frequency very close to ω_0 that is essentially the frequency of the "rotating frame", ω_r . The output frequencies, $\omega_0 - \omega_r$, are much lower and much easier to deal with. (In this respect, an NMR machine is much like a an expensive FM radio.)
- *Recorder* XY plotter, oscilloscope, computer, etc.

Macroscopic Magnetization

The molar bulk nuclear magnetization (H_0 = applied field),

$$M = g_N^2 \frac{\mu_N^2 N_A}{3k_B T} I(I+1) H_0 = \gamma_N^2 \hbar^2 \frac{N_A}{3k_B T} \Big[I(I+1) \Big] H_0$$

- This applies to a mole of nuclei with spin *I* and is derived in exactly the same way as for Curie's law for electronic magnetic moments.
- It is very small, since $\mu_N = (\mu_B / 1836)$.

Resultant Magnetization

- At equilibrium, there is no transverse component to the magnetization.
- In many instances, the behavior of *M*₀ is envisioned as it "evolves" in NMR experiments.

Iggo, Sec .1-12

Resultant Magnetization

• At equilibrium, there is a slight excess of "spins-up", but no net transverse component to the magnetization.

Ζ

Adapted from http://tonga.usip.edu/gmoyna/ NMR_lectures/NMR_lectures.html, lecture 1

Basic Pulse Experiment -Assume one type of nucleus

- a) Begin at equilibrium magnetization for the applied field.
- b) Perturb the system with a transverse RF pulse and M will precess about the *z*axis at the Larmor frequency, $\omega_0 = \gamma H_0$.

Basic Pulse Experiment - Assume one type of nucleus

Apply a perturbing field, H_1 , oscillating at angular frequency ω_0 along a) the *x*-axis. The energy source is an oscillating electromagnetic radiation generated by an alternating current:

Transmitter coil (y)

b)

C)

The linear oscillating field H_1 can be described as a superposition of two fields rotating away from the *x*-axis:

We can restrict attention to the circular component moving in the same direction as the precession of M.

Basic Pulse Experiment

$$\boldsymbol{\omega}_0 = \boldsymbol{\gamma}_N \boldsymbol{H}_0$$

The relative orientations of the magnetization, **M**, its xycomponent, **M**_{xy}, and the rotating RF field, **H**₁. H_1 , oscillating at angular frequency ω_0 in the laboratory frame, follows M's motion around the *z*-axis and applies a torque to M that drives M into the *xy*-plane.

Motion of M in the Lab Frame

The magnetization vector, M, traces a complex path (referred to as *nutation*) in the <u>laboratory frame</u> when rf field H_1 is applied.

Most vector diagrams of M therefore refer the <u>rotating frame</u> rotating at the Larmor frequency.

Motion of ${\bf M}$ in the Lab Frame

View in the rotating frame

$$\theta_{\text{tip}} = \gamma H_1 t_{\text{pulse}} \quad \bullet$$
$$H_1 = H_1(\omega_r) \; ; \; \omega_r \simeq \omega_0 = \gamma H_0$$

It is understood that 'tip angle diagrams' refer to the *rotating frame*.

If we adopt a frame of reference that rotates at an angular frequency at (or very near to) ω_0 , \mathbf{H}_1 and \mathbf{M} are fixed (or nearly fixed) in Intigeneral, $\gamma H_1 \gg |\gamma H_0 - \omega_r|$

If \mathbf{H}_1 is applied as a pulse for time t_p (~ 10 µs), the 'tip angle', θ , through which **M** is tilted is $\theta = \gamma H_1 t_p$.

Usually, the time of the pulse is referred to by the tip angle (i.e., as a $\pi/2$

More than one kind of nucleus

Effect of a $\pi/2$ pulse on M paths: path **a**: on resonance ($\omega_a = \omega_r$) path **b**: $\gamma H_1 = 2|\omega_b - \omega_r|$ path **c**: $\gamma H_1 = |\omega_c - \omega_r|$ path **d**: $1.5\gamma H_1 = |\omega_d - \omega_r|$ **A**,**B**,**C**,**D**: respective effective field directions.

- Inequivalent nuclei have
 different Larmor frequencies.
- It is therefore impossible for $H_1(\omega_r)$ to be exactly "on resonance" with all the lines in the spectrum.
- The greater a peak is offset from ω_r , the greater those nuclei's magnetizations will be from those which are on resonance.
- For nuclei b, c, and d, this pulse is "soft" and not really a π/2 pulse. To make the pulse "hard", we want to increase H₁ and shorten t_p.

Hard Pulse - Example

- Consider a proton spectrum spanning 10 ppm to be measured on a 500 MHz spectrometer
- Put the transmitter (source of $\mathbf{H}_1(\omega)$) near 5 ppm
- Maximum offset $\approx 5 \times 500$ Hz = 2500 Hz
- On a typical spectrometer, a 90° pulse might last about 12 μs.

Is the RF power "strong" over all the spectrum?

Hard Pulse - Example

- Consider a proton spectrum spanning 10 ppm to be measured on a 500 MHz spectrometer
- Put the transmitter (source of $H_1(\omega)$) near 5 ppm
- Maximum offset $\approx 5 \times 500$ Hz = 2500 Hz
- On a typical spectrometer, a 90° pulse might last about 12 μs. Calculating,

The tip angle is given by $\theta_{tip} = \gamma H_1 t_{pulse}$

Therefore, $\omega_1 = \gamma H_1 = \frac{\theta_{\text{tip}}}{t_{\text{pulse}}} = \frac{\pi/2}{12 \times 10^{-6} \text{ s}} = 1.3 \times 10^5 \text{ s}^{-1} = 130000 \text{ radians s}^{-1}$

Maximum offset is $2\pi \times 2500 \text{ Hz} = 15700 \text{ radians s}^{-1}$

RF field frequency is about 8 times the offset.

Data Acquisition

(a)

Fig. 1.9. One second of the FID, and the spectrum, of a system containing two frequencies: (a) reference is 30 Hz from the central frequency; (b) reference is 50 Hz from the central frequency; (c) Fourier transformed spectrum from (b).

- After the pulse is applied, data is collected as "Free Induction decays" (FIDs) until the signal begins to descend into the noise.
- FIDs are Fourier transformed to pull our their characteristic frequencies (or their differences with respect to a reference frequency).

Basic 1-Pulse FT NMR Experiment

 Summary: After the pulse, the time-domain FID data is collected over the "acquisition time". Then there is a delay time to allow the spin system to return to equilibrium...then another pulse...

http://www.scs.uiuc.edu/~mainzv/Basics/basics.htm

Peak intensities and Relaxation times

The intensity observed for a given resonance (I_A) is proportional to the extent to which the pulse induced magnetization decays to its equilibrium value:

$$\begin{split} I_A &\propto \left(M_0 - M_z(0) \right) \left(1 - e^{-\tau/T_{1A}} \right) \\ \frac{\left[A \right]}{\left[B \right]} &= \frac{I_A}{I_B} \times \frac{1 - e^{-\tau/T_{1B}}}{1 - e^{-\tau/T_{1A}}} \end{split}$$

 M_0 is the equilibrium longitudinal magnetization, $M_z(0)$ is the longitudinal magnetization after the perturbing pulse, τ is the acquisition time, and T_{1A} is the spin-lattice relaxation time for nucleus *A*. See Canet, Chapter 4.

Measuring T₁: Inversion Recovery

• Measurement of T_1 is important, as the relaxation rate of different nuclei in a molecule can tell us about their local mobility. We cannot measure it directly on the signal or the FID because T_1 affects magnetization we don't detect. We use the following pulse sequence: $180_{v(or x)}$ 90_v acquire

t_D-

we are letting the signal decay by different amounts exclusively under the effect of longitudinal relaxation (T₁), we'll see how different t_p's affect the intensity of the FID and the signal after FT.

Inversion Recovery, cont.

Depending on the t_D delay we use we get signals with varying intensity, which depends on the T_1 relaxation time of the nucleus (peak) we are looking at.

22.63 MHz ¹³C NMR spectra of ethylbenzene (1), recorded by the inversion recovery method (Fig. 7-2) with $\tau = 1, 5, 10, 15, 30, 50$ and 100 s [1].

Spin Echo - T₂ measurement

- Measurement of T₂ can in principle be performed by calculating the decay in the FID envelope (which determines the line widths) because the signal on M_{xy}, in theory, decays only due to transverse relaxation. In practice, however, contributions due to field inhomogeneity can dominate.
- The *spin-echo pulse sequence* allows us to avoid contributions inhomogeneous broadening:

The 180° pulse: refocusing

Different nuclei in the sample move away from the *y*-axis (to which M is tipped in the π/2 pulse) at different rates because of chemical shift differences and field inhomogeneity. The Hahn spin-echo sequence allows them to refocus at the -*y* axis. But transverse relaxation still attenuates the magnitude of M.

If we acquire an FID right after the echo, the intensity of the signal after FT will affected only by T₂ relaxation and not by dephasing due to an inhomoge-neous B_o. We repeat this for different **t**_D's and plot the intensity against $2 \cdot t_{\rm D}$. In this case it's a simple exponential decay, and fitting

 \oplus

Spin echoes (continued)

A Little Theory of 1-D NMR

Origins of Chemical Shifts (Shielding)

$$H = H_0 (1 - \sigma) \quad ; \quad \sigma = \sigma_d + \sigma_p$$

$$\sigma_d (zz) = \frac{e^2}{2mc^2} \langle 0 | \frac{x^2 + y^2}{r^2} | 0 \rangle$$

$$\sigma_p (zz) = -\left(\frac{e\hbar}{2mc}\right)^2 \sum_n \left\{ \frac{\langle 0 | L_z | n \rangle \langle n | \frac{2L_z}{r^3} | 0 \rangle}{E_n - E_0} + \frac{\langle 0 | \frac{2L_z}{r^3} | n \rangle \langle n | L_z | 0 \rangle}{E_n - E_0} \right\}$$

- Shielding consists of a diamagnetic (σ_d) and paramagnetic (σ_p) response of the electrons to the applied field.
- σ_d arises from a first-order effect, reflecting the electron density distribution in the ground state. (Often dominant in proton spectra.)
- σ_p arises from a second-order mixing of paramagnetic excited states into the ground state by the applied field (much like TIP). Often dominant for other nuclei.

¹¹**B** NMR spectra for $\text{Rb}_5\text{Zr}_6\text{Cl}_{18}\text{B}$ in acetonitrile with (a) no added ligand, (b) 6 eq. added TlPF₆, and (c) 10 eq. added PPNCl. Labeling on the peaks (x = 0 - 6) indicates the number of terminal chlorides in $[(\text{Zr}_6\text{BCl}_{12})(\text{NCCH}_3)_{6-x}\text{Cl}_x]^{1-x}$.

Chemical Shift Example: $[Zr_6BCI_{12}(MeOH)_{(6-x)}py_x]^+$

¹¹B spectrum of $[Zr_6BCI_{12}(MeOH)_6]^+$ in methanol solvent, to which pyridine was added until the pyridine mole fraction was 5%.

More on Spin-spin Coupling

• The nuclear spin Hamiltonian for two interaction nuclei, *A* and *X*, is

$$\mathcal{H} = -h\left(\mathbf{v}_{A}I_{A}^{z} + \mathbf{v}_{X}I_{X}^{z}\right) + hJ_{AZ}\mathbf{I}_{A} \cdot \mathbf{I}_{X}$$

where I_A^z and I_X^z are operators for the *z*-component the spin on *A* and *X*, and J_{AX} is the coupling constant for *A* interacting with *X*.

• This Hamiltonian will yield the energy expression given earlier (when chemical shift differences are much greater than couplings, $|v_A - v_B| >> J_{AB}$.

2nd-Order Spectral Case

Range of cases

Miscellaneous Examples

Coupling Examples

Coupling of spin-1/2 nuclei works in pretty much the same way in all cases.

Coupling to non-spin-1/2 Nuclei

⁷³Ge (I = 9/2, 8% abundance) couples to equivalent protons in ⁷³GeH₄. (¹H spectrum)

Fig 2.14 ¹H NMR spectrum of GeH₄. The ten evenly spaced lines are due to the 8% of the molecules which contain ⁷³Ge (I = 9/2). The intense central line arises from all other isotopic species.

Coupling to Quadrupole Nuclei

Calculated band shapes for a spin 1/2 nucleus (¹H) coupled to a spin 1 nucleus (¹⁴N). The shape depends on the ratio of ¹⁴N relaxation rate to the NH coupling. For very fast relaxation just a single line is observed, while for slow relaxation there are three lines of equal intensity.

 Because spin-spin coupling induces spin wavefunction mixing, the relaxation of a quadrupole nucleus is partially "transferred" to spin-1/2 nuclei to which it is coupled.

Si₂H₆ (¹H spectrum)

Si₂H₆ (¹H spectrum)

²⁹Si (I = 1/2, 4.7% abundance)

$[Zr_6BCI_{12}(PEt_3)_6]^+ + ?$

a) ¹¹B spectrum of $[Zr_6BCI_{12}(PEt_3)_6]^+$ plus an impurity.

b) ³¹P spectrum of $[Zr_6BCI_{12}(PEt_3)_6]^+$ plus an impurity.

What is the impurity?

¹¹B (I = 3/2, 81.2% abundance), ¹⁰B (I = 3, 18.8% abundance)

Correlations like the well-known Karplus relation shown here ultimately derive from the manner in which *s*-electron density is involved in wavefunctions that spread over two coupled nuclei.

Fig. 46. The vicinal Karplus correlation. Relationship between dihedral angle and coupling constant for vicinal protons.

Coupling: Structural Correlations

For 3-bond coupling constants the empirical relation here is useful: ${}^{3}J_{XY} = A\cos 2\phi + B\cos \phi + C$

FIGURE 12.12. 100-MHz spectrum of styrene oxide (25% in CCl₄). The part of the spectrum due to aromatic protons is not shown.

trans-Rh(CO)Cl{Ph₂PCH₂P(O)Ph₂}₂: ³¹P{¹H}: First- and Second-order Coupling

 103 Rh I = $^{1}/_{2}$ abundance = 100%

Correlations ultimately derive from the manner in which *s*-electron density is involved in wavefunctions that spread over two coupled nuclei. Coupling: Structural Correlations

Fig. 2.19 The size of the coupling constant is a good indication of the interbond angle, being smaller between similar groups in a *cis* orientation than when the coupling nuclei are mutually *trans*. Here the ³¹P NMR spectrum of a palladium hydride complex is shown. The larger couplings are between *trans* groups. From data in Braunstein *et al. Inorg. Chem.*, 1992, **31**, 411.

A Typical (Simple) Structural problem

2.4 The ¹³C NMR spectrum of the carbonyl groups in one isomer of $[W(CO)_4P(OMe)_3(SPh)]^$ is shown in Fig. 2.46. Identify the isomer and account for the form of the spectrum. What would you expect to see in the ¹³C spectrum of the other isomer? [The figure is adapted, with permission, from D.J. Darensbourg, K.M. Sanchez and J. Reibenspies, *Inorg. Chem.*, 27, 3636 (1988). Copyright (1988) American Chemical Society.

Chemical Shift Equivalence (isochronous nuclei)

- Two isomers of 1,3dibromo-1,3diphenylpropane
- How many chemicalshift equivalent sets of aliphatic protons in each isomer?

Magnetic (In)equivalence

p-fluoronitrobenzene

difluoroethylenes

- Magnetically equivalent nuclei are coupled equally to every third nucleus in the spin system.
- In each molecule the protons are chemical shift equivalent?
- Which sets are *magnetically equivalent*?

Magnetic (In)equivalence

 C_5H_5N (simulated)

- Magnetically equivalent nuclei are coupled equally to every third nucleus in the spin system.
- The "unknown" here is an easy one, but the spectrum is more complicated than you might have expected.

Notation for labeling nuclei

- Chemically and magnetically equivalent nuclei given the <u>same</u> label. (e.g., A)
- Chemically, but not magnetically equivalent nuclei given primes. (e.g, AA' for two, AA'A'' for three, etc.)
- Nuclei with small chemical shift differences (smaller or comparable to coupling between them) given alphabetically close labels (e.g., A, B, C, D, etc.)
- Inequivalent nuclei with large chemical shift differences given alphabetically distant labels (e.g., AMX, for three)
- One can describe a mix of types of nuclei
 - A_2BMXY is a six-spin system with two equivalent nuclei (A), strongly coupled (compared to Δv_{AB}) to one nucleus B, weakly coupled to one nucleus M (vs Δv_{AM}) and very weakly coupled to X & Y
 - M is weakly coupled to all nuclei
 - B is only strongly coupled to A
 - X & Y are strongly coupled to each other and weakly to all other nuclei

Examples (ignoring phenyl groups)

 H_b'

Br

Ph

 H'_a

Br

• AA'MM'

• ABM₂

More Examples

P-fluoronitrobenzene

 AA'BB' (in a sufficiently high field, AA'MM')

difluoroethylenes

all AA'XX' (AA'MM' equally good)

Characterize indicated protons as to chemicalshift and/or magnetic equivalence

 Both ³¹PMe₃ couple to each of the ³¹PEt₃ in an equivalent fashion (and vice versa).

More Examples

- The ³¹PMe₃ couple to <u>each</u> of the ³¹PEt₃ differently (and vice versa), ∴ magnetically inequivalent.
- Sample data:
 - $J_{AB} = J_{A'B'} = 104 \text{ Hz}$
 - $J_{AA'} = J_{A'A} = 20 \text{ Hz}$
 - $J_{BB'} = J_{B'B} = 19.2 \text{ Hz}$
 - $J_{A'B} = J_{AB'} = J_{BA'} = J_{B'A} = 23 \text{ Hz}$

Expected ³¹P {¹H} Spectrum

Dynamic NMR

See Chapter 7, *NMR and Chemistry*, 4th Edition, J.W. Akitt and B. E. Mann.

Time Scale

$$\Delta E = \gamma_N \hbar H_0 = h \nu_L$$
$$\nu_L = \left| \frac{\gamma_N}{2\pi} \right| H_0 \; ; \; \omega_0 = \gamma_N H_0$$

including chemical shift: $v = \left| \frac{\gamma_N}{2\pi} \right| H_0 (1 - \sigma)$

- NMR is generally considered to be a slow technique, with a characteristic time scale, τ ~ 10-⁷ s. (Recall, 1/τ = v ~ 100 MHz.)
- This is actually much faster than rates usually measured with NMR. Reactions with half-lives of 10⁻² s to 10⁻³ s are more typical, I.e., the *difference* between resonance frequencies.

Thermodynamic and Kinetic Exchange Parameters

A
$$\xrightarrow{k_A}$$
 B

Well **below** the coalesence point), the individual line widths are given by:

$$\Delta v_A = \frac{k_A}{\pi} = \frac{1}{\pi \tau_A} \quad ; \quad \Delta v_B = \frac{k_B}{\pi} = \frac{1}{\pi \tau_B}$$

In the limit of fast exchange (**above** the coalesence point), the line width is given by:

$$\Delta v = \frac{4\pi p_A p_B (\delta v_{AB})^2}{k_A + k_B}$$

 p_A and p_B are the fractional populations of sites A and B.

Hindered Rotation

A 2-site example illustrating different line-shape regimes in a dynamic process amenable to NMR study.

Fig. 2.40 (a) Calculated band shapes for various values of exchange rate relative to frequency difference for two equally populated sites. (b) Gasphase ¹³C NMR spectra of N,N-dimethyl-¹³C₂-formamide, 2.XXXI. The spectra, recorded at 427, 415, 410, 397 and 373 K. show two distinct resonances at low temperatures, when rotation about the central C-N bond is rapid. Spectra in (b) are taken, with permission, from B.D. Ross and N.S. True, J. Am. Chem. Soc., 106, 2451 (1984). Copyright (1984) American Chemical Society.

Cyclohexane Interconversion

Another 2-site example illustrating different line-shape regimes in a dynamic process amenable to NMR study.

`D

٠H

D

Ή

Η-

Н

D~

$T_{\rm C}$ and $k_{\rm C}$

- If (a) the exchange process is first-order,(b) there is no coupling between exchanging nuclei, and
 - (c) the two singlets have equal intensities:

For the coalescence temperature, T_C , the rate constant, k_C , is

$$k_C = \frac{\pi \Delta v}{\sqrt{2}} \cong 2.22 \,\Delta v$$

 Δv is the chemical shift difference (in Hz) in the absence of exchange (determined at low temperature but extrapolated to high T).

• Even when (a), (b), and (c) are not exactly fulfilled, this is usually a decent estimate for $k_{\rm C}$.

$T_{\rm C}$ and $k_{\rm C}$

 Coalescence is defined as the point at which the minimum between the high temperature peaks becomes a flat plateau.

Calculated spectra for exchange between two equally populated sites separated by 40 Hz. T_2 values of both sites are 1 s.

$$k_C = \frac{\pi \Delta v}{\sqrt{2}} = \frac{40\pi}{\sqrt{2}} = 88.8 \text{ s}^{-1}$$

The Slow Exchange Regime

$$W_{1/2} = \frac{1}{\pi T_2}$$

when spin-spin relaxation

is the mechanism controlling a spin's lifetime

Linewidth determined by time a spin spends at one location (nucleus) $W_{1/2} = \frac{1}{\pi T_2} + \frac{1}{\pi \tau_{\text{ex}}} = \frac{1}{\pi T_2} + \frac{k}{\pi}$

where k is the rate constant for exchange

When exchange is occurring there are two mechanisms that shorten the lifetime of the spin state

$$\therefore \quad k = \pi \left[\left(W_{1/2} \right)_{\text{ex}} - \frac{1}{\pi T_2} \right] = \pi \left[\left(W_{1/2} \right)_{\text{ex}} - \left(W_{1/2} \right)_0 \right]$$

fairly accurate when $\left(W_{1/2} \right)_{\text{ex}}$ is substantially larger than $\left(W_{1/2} \right)_0$

Fluxional Cp Rings

 The η¹- and η⁵-Cp proton resonances coalesce at 36 °C. (What process must be quite rapid even at -27 °C?)

$T_{\rm C}$ and $k_{\rm C}$ - more

- When expressed in ppm, chemical shifts are field independent. But Δv is in Hz, which means that $\Delta v \propto H$. Therefore, $T_{\rm C}$ and $k_{\rm C}$ increase with the field used in the NMR experiment (and the highest available field may not be the most appropriate).
- Coupling between exchanging nuclei can be handled: If nuclei A and B are exchanging and

are coupled (with constant J_{AB}) k_C is

$$k_{C} = \frac{\pi \Delta v}{\sqrt{2}} \cong 2.22 \sqrt{\left(\Delta v\right)^{2} + 6J_{AB}^{2}}$$

An example with Coupling

- H^A and H^B are clearly inequivalent at -55 °C, but are equivalent in the fast exchange regime at 35 °C.
- How would this study have changed if carried out on a 300 MHz instrument?

60 MHz ¹H NMR signals of the ring protons H^A and H^B
Complete Line Shape Analysis

- Record spectra at different temperatures, e.g.,
 - 3 slow-exchange spectra (incl. 1 stopped-exchange)
 - 5-10 spectra in coalescence regime
 - 3 spectra in near-fast and fast regime
- Analyze spectrum in stopped exchange regime Get v's, J's, line-widths ($\Delta v_{1/2}$'s)
- Calculate spectra in the coalescence regime, varying k(s) until observed and calculated spectra match. Repeat at other temperatures.
- If necessary, calculate spectra in fast-exchange limit.

Evidence for Berry Pseudorotation

Observed and calculated 36.43 MHz ${}^{31}P{}^{1}H$ spectra of [Rh{P(OMe)_3}_5]⁺ in CHCIF_2/CH_2CI_2 (9:1) at -114 °C.

pairwise exchange (turnstile) mechanism

Berry pseudorotation (P₄ pivot)

Activation Parameters

- Use of the Arrhenius plots (lnk vs. 1/T) are a lot of work since they require data for a range of temperatures (many measurements and full line-shape analyses)
- Estimate for ΔG^{\ddagger} using the Eyring equation is easy with $T_{\rm C}$ in hand:

$$k = \aleph \frac{k_B T}{h} e^{-\Delta G^{\ddagger}/RT} = \aleph \frac{k_B T}{h} e^{\Delta S^{\ddagger}/R} e^{-\Delta H^{\ddagger}/RT} \text{ or } \Delta G^{\ddagger} = RT \left\{ 23.759 + \ln\left(\frac{k}{T}\right) \right\}$$
$$\left(\text{at } T = 298.15 \text{ K}, \ \frac{k_B T}{h} = 6.21 \times 10^{12} \text{ s}^{-1}, \ \aleph \text{ is usually taken to be} \sim 1 \right)$$

An Eyring plot, $\ln(k/T)$ vs. 1/T, would should yield ΔH^{\ddagger} and ΔS^{\ddagger} , but again, much more work. WARNING: This approach is still fraught with the potential for large errors, because the range temperatures on can measure is small, chemical shift dependence on T, linewidth misestimates, poor T calibration, and broadening due to unresolved coupling (see Akitt & Mann).

More Accurate Activation Parameters

Better activation parameters can be obtained from NMR kinetic studies:

- Use different spectrometers, with different frequencies. The *frequency difference* between resonances varies with field strength when the peak differences are due to chemical shifts (only the ppm values remain the same). For this reason, a rate study might be better carried out on a lower field instrument. (Coalescence occurs at a lower temperature in lower field.)
- (2) Different nuclei might be used (see example).
- (3) Different methods are useful in different regimes; e.g., lineshape analysis when rates are within an order of magnitudes of the coalescence rate and magnetization transfer for lower temperatures with slower rates.

How does the ring whiz?

Fe

Peaks at $\delta \approx 6.0$ (**B**) & 6.3 (**A**) are assigned to H_{3,4} & H_{2,5}, respectively.

A resonances collapse faster than **B** resonances. Mechanism? See problem set!

Competing Mechanisms?

- At -3°C, the COD ethylenic protons and the diastereotopic (CH₃)P are not exchanging.
- At 67°C, the COD ethylenic protons are exchanging, but the diastereotopic (CH₃)P groups are not.
- At 117°C, the COD ethylenic protons and the diastereotopic (CH₃)P are both exchanging.

Competing Mechanisms?

- At -3°C, the COD ethylenic protons and the diastereotopic (CH₃)P are not exchanging.
 - At 67°C, the COD ethylenic protons are exchanging, but the diastereotopic (CH_3)P groups are not.
 - At 117°C, the COD ethylenic protons and the diastereotopic $(CH_3)P$ are both exchanging.

Short Questions

- Explain each of the following observations.
 (a) The ¹H spectrum of GeH₄ shows ⁷³Ge satellites but the spectra of GeFH₃ and GeClH₃ do not.
 - (b) The ¹³C-{¹H} NMR spectrum of (bis)allylnickel at 200 K shows three resonances, of equal intensity; at 250 K, only two resonances are observed, in a 2:1 intensity ratio.
 - (c) The ¹H NMR spectrum of rigorously dried ¹⁴N-ammonia is a broad 1:1:1 triplet that becomes broader as the temperature is lowered; the ¹H NMR spectrum of ¹⁵Nammonia containing a trace of Na¹⁵NH₂ is a broadened 1:1 doublet that becomes sharper as the temperature is lowered.

Reaction of IF_7 and SbF_5 gives a 1:1 product. The ¹⁹F NMR spectrum contains two sets of resonances: one with 6 lines of equal intensity; the other with overlapping patterns of 6 lines of equal intensity and 8 lines of equal intensity, the former being somewhat stronger. Explain.

¹²¹Sb ⁵/₂, **57.3** %, ¹²¹Sb ⁷/₂, **42.7** %, ¹²⁷I ⁵/₂, **100** %

What coupling pattern would you expect to observe for a single proton coupled to (a) one and (b) two equivalent ¹¹B nuclei? (c) Same as (b) but with a "real sample?

¹¹B ³/₂, 80.4 %, ¹⁰B 3, 19.6 %

The ¹H NMR spectrum of GeFH₃ consists of two lines separated by 42 Hz. What are the relative positions and intensities of all the lines in the ¹⁹F spectrum of (a) GeDFH₂ (b) GeD₂FH (c) GeD₃F

 $W(CO)_6$ reacts with NaBH₄ to give an anionic product. Its tetraethylammonium salt has the empirical composition $C_{18}H_{21}NO_{10}W_2$. Its ¹H NMR spectrum includes a triplet, intensity ratio 1:6:1, at δ -22.5 ppm, with a separation between the outer peaks of 42 Hz. What can you deduce about the structure of the anion?

¹⁸³W, S = $1/_2$, 14.4 %