Nuclear Magnetic Resonance

Chem 634
T. Hughbanks

Books, Web sites, etc.

\& J. Iggo, "NMR Spectroscopy in Inorganic Chemistry"
\& J. K. M. Sanders and B K. Hunter, "Modern NMR Spectroscopy; A Guide for Chemists"

* H. Friebolin, "Basic One- and Two-Dimensional NMR Spectroscopy"
© D. Canet, "Nuclear Magnetic Resonance; Concepts and Methods"
\& E. A. V. Ebsworth, D. W. H. Rankin, S. Cradock, "Structural Methods in Inorganic Chemistry", Chapter 2.
* R. S. Drago, "Physical Methods", Chapters 7, 8, and 12.
* For serious NMR students, some excellent on-line resources http:// www.spectroscopynow.com/coi/cda/landing.cda? chld=5\&type=Education
* Guillermo Moyna's good NMR lectures (from which I've borrowed some) http://208.7.154.206/gmoyna/NMR lectures/NMR lectures.html
- A good site for NMR basics: http://www.cis.rit.edu/htbooks/nmr/ inside.htm
- A good site for basic organic spectra and some problems: http:// www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm

NMR

AND CHEMISTRY

An introduction to modern
NMR spectroscopy

J. W. Akitt and B. E. Mann

Fourth edition

More Advanced Inorganic/ Organometallic Reference

NMR is Broadly Applicable

- Nuclear Magnetic Resonance
- Applies to atoms and molecules with nuclear spin quantum numbers greater than zero.
- Applied magnetic field induces Zeeman splittings in spin states, and energy is absorbed from radiation when the frequency meets the resonance condition, $h \nu=\Delta \mathrm{E} \propto \mu_{\mathrm{N}} \times H_{0}$
- $1 / \lambda \sim 10^{-3} \mathrm{~cm}^{-1}, v=c / \lambda \sim 25-500 \mathrm{MHz}$

Spectroscopy: The Big Picture

NMR

Basic Aspects of the NMR Phenomenon

Zeeman interaction for proton

 If a proton is placed in a magnetic field, $\mathbf{H}=$ $H_{z} \hat{\mathbf{z}}$, the proton's energy will depend on its m_{l} value. The Zeeman interaction between the applied field and the magnetic moment of the proton is illustrated as:

For proton:

$$
g_{N}=5.585
$$

$$
g_{N} \mu_{N} H_{0}=\gamma_{N} \hbar H_{0} \quad \gamma_{N}=26,753
$$

(magnetogyric ratio)
(radians $\cdot \mathrm{s}^{-1} \cdot \mathrm{G}^{-1}$)

Sensitivity, Populations

Even at $300 \mathrm{MHz}(H=7.05 \mathrm{~T})$, the population difference of the two spin states for a proton is $\sim 10^{-5}$. Since other nuclei have smaller gyromagnetic ratios, they exhibit even smaller differences at the same field.

$$
\begin{gathered}
\frac{N_{\beta}}{N_{\alpha}}=e^{-\Delta E / k_{B} T} \simeq 1-\frac{\Delta E}{k_{B} T}=0.99999135 \\
(H=7.05 \mathrm{~T} ; T=298 \mathrm{~K})
\end{gathered}
$$

Time Scale

- NMR is generally considered to be a slow technique, with a characteristic time scale, $\tau \sim 10^{-7} \mathrm{~s}$. (Recall, $1 / \tau=v \sim$ 100 MHz .)
- Molecular events occurring in times much faster than 10^{-4} s or less are "time averaged" in NMR (a more careful distinction to come later).

Miscellaneous Familiar Matters

- For solution spectra, the immediate chemical/structural information is conveyed by the chemical shifts and the spin-spin couplings.
- Nuclei with I >1/2 have quadrupole moments - even solution spectra are broadened when such nuclei experience electric field gradients.
- The ratios of resonance frequencies for a given field are equal to the ratios of the gyromagnetic constants: $\gamma_{A} / \gamma_{B}=$ v_{A} / v_{B}. For example, on a " 300 MHz spectrometer", ${ }^{13} \mathrm{C}$ spectra occur at 75.44 MHz since $\gamma_{13 \mathrm{C}} / \gamma_{1 \mathrm{H}}=6728 / 26,753=$ $75.44 / 300$. (It would be better to call a " 300 MHz spectrometer" a 7.046 T spectrometer.)

Chemical Shift Scale

$$
\delta=\frac{v-v_{\mathrm{TMS}}}{v_{\mathrm{TMS}}}
$$

$$
\delta_{\mathrm{ppm}}=10^{6} \times \frac{v-v_{\mathrm{TMS}}}{v_{\mathrm{TMS}}}
$$

- In order to make NMR data independent of the field used, chemical shifts are reported relative to a standard (usually TMS for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$).
- Since the shifts are generally small, they are always given in parts per million (ppm).

Peak differences often in Hz

- It turns out to be more physically useful to think about differences between energies of NMR transitions in terms of differences in frequencies, e.g., $v_{2}-v_{1}$.

$$
\begin{gathered}
\delta_{2}-\delta_{1}=10^{6} \times \frac{v_{2}-v_{\mathrm{TMS}}}{v_{\mathrm{TMS}}}-10^{6} \times \frac{v_{1}-v_{\mathrm{TMS}}}{v_{\mathrm{TMS}}}=10^{6} \times \frac{v_{2}-v_{1}}{v_{\mathrm{TMS}}} \\
\Rightarrow \quad v_{2}-v_{1}=\frac{v_{\mathrm{TMS}}}{10^{6}}\left(\delta_{2}-\delta_{1}\right)
\end{gathered}
$$

Resonance, Larmor Frequency

$$
\Delta E=\gamma_{N} \hbar H_{0}=h \nu_{L}
$$

(γ_{N} is the gyromagnetic ratio for the nucleus in question)
v_{L} is the Larmor frequency: $v_{L}=\left|\frac{\gamma_{N}}{2 \pi}\right| H_{0} ; \omega_{0}=\gamma_{N} H_{0}$

$$
\text { including chemical shift: } v=\left|\frac{\gamma_{N}}{2 \pi}\right| H_{0}(1-\sigma)
$$

- NMR transitions are stimulated (absorption and emission) by an additional oscillating (electro)magnetic field, H_{1}, is applied at the Larmor frequency.
- Shielding is proportional to the applied field hence the units of chemical shift: ppm.

More Familiar Matters

- Resonance frequencies for two interacting nuclei are given by

$$
E=-h \sum_{A} v_{A} m_{A}+h \sum_{A<B} J_{A B} m_{A} m_{B}
$$

where m_{A} is the z-component the spin on A, and $J_{A B}$
is the coupling constant for A interacting with B.

- This expression applies when chemical shift differences are much greater than couplings, $\left|v_{A}-v_{B}\right| \gg J_{A B}$.

Basic Spectra - ${ }^{1} \mathrm{H}$

Basic Spectra - ${ }^{1} \mathrm{H}$

Basic Spectra - ${ }^{1 \mathrm{H}}$

Basic Spectra - 1H

Chemical shifts of ${ }^{1} \mathrm{H}$ nuclei in organic compounds

Notation for labeling nuclei

- Chemically and magnetically equivalent nuclei given the same label. (e.g., A)

Chemically, but not magnetically equivalent nuclei given primes. (e.g, A^{\prime} for two, $A^{\prime} A^{\prime \prime}$ for three, etc.)

- Nuclei with small chemical shift differences (smaller or comparable to coupling between them) given alphabetically close labels (e.g., A, B, C, D, etc.)
- Inequivalent nuclei with large chemical shift differences given alphabetically distant labels (e.g., AMX, for three)
- One can describe a mix of types of nuclei
- $\mathrm{A}_{2} \mathrm{BMXY}$ is a six-spin system with two equivalent nuclei (A), strongly coupled (compared to $\Delta v_{A B}$) to one nucleus B, weakly coupled to one nucleus M (vs $\Delta \mathrm{v}_{\mathrm{AM}}$) and very weakly coupled to X \& Y
$-M$ is weakly coupled to all nuclei
$-B$ is only strongly coupled to A
- X \& Y are strongly coupled to each other and weakly to all other nuclei

A (disastrous) problem from the 2008 Final

On the next slide is a fairly accurate simulation of the line positions and intensities observed for the ${ }^{1} \mathrm{H}$ NMR spectrum of methylethylketone, $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$, measured on an old continuous-wave 60 MHz (1.4093 T) NMR instrument (the TMS reference is not shown). Assign the spectrum, and in the blank space below the spectrum, draw an analogous stick-like spectrum that shows, as accurately as possible, what the spectrum would look like if recorded on a more modern $300 \mathrm{MHz}(7.0463 \mathrm{~T}$) instrument. Be careful to accurately place the positions of the peaks and their relative intensities.

${ }^{1} \mathrm{H}$ NMR, 60 MHz

1H NMR, 300 MHz

An "unknown" example - ${ }^{1} \mathrm{H}$

Even AMX can be a little complicated

Figure 12.12. $100-\mathrm{MHz}$ spectrum of styrene oxide $\left(25 \%\right.$ in $\left.\mathrm{CCl}_{4}\right)$. The part of the spectrum due to aromatic protons is not shown.

Basic Spectra - ${ }^{13} \mathrm{C}$

ketones aldehydes acids esters, amides thioketones azomethines heteroaromatics alkenes
arenes
nitriles
alkynes
C(quaternary)

C(tertiary)

C(secondary)

C(primary)
solvents

Chemical shifts of ${ }^{13} \mathrm{C}$ nuclei in organic compounds.

An "unknown" example - ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$

An "unknown" example $-{ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$

${ }^{13} \mathrm{C}$

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$

Origins of Chemical Shifts (Shielding)

$$
\begin{gathered}
H=H_{0}(1-\sigma) ; \quad \sigma=\sigma_{d}+\sigma_{p} \\
\sigma_{d}(z z)=\frac{e^{2}}{2 m c^{2}}\langle 0| \frac{x^{2}+y^{2}}{r^{2}}|0\rangle \\
\sigma_{p}(z z)=-\left(\frac{e \hbar}{2 m c}\right)^{2} \sum_{n}\left\{\frac{\langle 0| L_{z}|n\rangle\langle n| \frac{2 L_{z}}{r^{3}}|0\rangle}{E_{n}-E_{0}}+\frac{\langle 0| \frac{2 L_{z}}{r^{3}}|n\rangle\langle n| L_{z}|0\rangle}{E_{n}-E_{0}}\right\}
\end{gathered}
$$

- Shielding consists of a diamagnetic (σ_{d}) and paramagnetic (σ_{p}) response of the electrons to the applied field.
- $\quad \sigma_{d}$ arises from a first-order effect, reflecting the electron density distribution in the ground state. (Often dominant in proton spectra.)
- σ_{p} arises from a second-order mixing of paramagnetic excited states into the ground state by the applied field (much like TIP). Often dominant for other nuclei.
$\gamma_{N}=\frac{g_{N} \mu_{N}}{\hbar} \quad$ Table 1.1. Nuclear Moments and Spins

Nucleus	I	g_{N}	$\begin{gathered} \gamma_{N}(\text { radians } \\ \left.\sec ^{-1} \cdot \text { gauss }^{-1}\right) \end{gathered}$	Nucleus	I		$\begin{gathered} \gamma_{N}(\text { radians } \\ \left.\sec ^{-1} \cdot \text { gauss }^{-1}\right) \end{gathered}$	$\underset{\left(10^{-24} \mathrm{~cm}^{2}\right)}{Q}$
H^{1}	1/2	5.585	26,753	D^{2}	1	0.857	4,107	0.00274
C^{13}	1/2	1.405	6,728	Li^{7}	3/2	2.171	10,398	0.02
N^{15}	1/2	-0.567	-2,712	B^{11}	3/2	1.791	8,853	0.00355
F^{19}	1/2	5.257	25,179	N^{14}	1	0.403	1,934	0.02
4.7\% $\mathbf{S i}^{\mathbf{2}}$	1/2	-1.111	-5,319	O^{17}	5/2	-0.757	-3,628	-0.0265
$100 \% \mathrm{P}^{31}$	1/2	2.263	10,840	Na^{23}	3/2	1.478	7,081	+1.00 or
$33.7 \% \mathrm{Pt}^{195}$	1/2	1.120	5,747					-0.836^{a}
				S^{33}	3/2	0.429	2,054	-0.064
				Cl^{35}	3/2	0.548	2,624	-0.079
				Cl^{37}	3/2	0.456	2,184	-0.062
				K^{39}	3/2	0.261	1,250	0.113

Nuclei with no spin: $\mathrm{C}^{12} \mathrm{O}^{16} \mathrm{O}^{18} \mathrm{Si}^{28} \mathrm{~S}^{32} \mathrm{Ca}^{40} \quad{ }^{a}$ The quadrupole moment of Na^{23} is uncertain.

Relaxation Iggo, Sec.1-10

- Refers to processes by which spins nonradiatively lose energy
- The phenomenon of relaxation is crucial to NMR. In the (obsolete) continuous wave method, signals would rapidly saturate because spin populations can become equal. In FT-NMR, relaxation is necessary to bring system to equilibrium between pulses.
- T_{1} : spin-lattice relaxation, dissipation of energy to surroundings (non-spin degrees of freedom)
- T_{2} : spin-spin relaxation, transfer of energy to other spins. $T_{1} \geq T_{2}$
- Quadrupole moments, Q, cause T_{2} to shorten greatly, leading to line-broadening

Correlation times and Relaxation

Proton relaxation times in glycerine between $60^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$. Measured at $29 \mathrm{Mc} / \mathrm{s}$.

Relaxation effects depend on the frequency spectrum of the local fields experienced by a nuclear spin. The correlation time, τ_{c}, is a characteristic time scale of fluctuations (due to molecular tumbling ~ rotational Brownian motion) in solution. Relaxation is most efficient when $1 / \tau_{c} \sim \nu$.

Table 2.2 NMR properties of some quadrupolar nuclei ${ }^{a}$

Isotope	Spin	Natural abundance/ \%	Magnetogyric ratio ${ }^{\circ} /$ $10^{7} \mathrm{rad} \mathrm{~T}^{-1} \mathrm{~s}^{-1}$	Relative NMR frequency/ MHz	Relative receptivity	Quadrupole moment ${ }^{b}$ / $10^{-28} \mathrm{~m}^{2}$
${ }^{2} \mathrm{H}^{c}$	1	0.015	4.1066	15.4	1.5×10^{-6}	2.8×10^{-3}
${ }^{6} \mathrm{Li}$	1	7.4	3.9371	14.7	6.3×10^{-4}	-8×10^{-4}
${ }^{7} \mathrm{Li}$	3/2	92.6	10.3975	38.9	2.7×10^{-1}	-4×10^{-2}
${ }^{9} \mathrm{Be}$	3/2	100.0	-3.7596	14.1	1.4×10^{-2}	5×10^{-2}
${ }^{10} \mathrm{~B}$	3	19.6	2.8746	10.7	3.9×10^{-3}	8.5×10^{-2}
${ }^{11} \mathrm{~B}$	$3 / 2$	80.4	8.5843	32.1	1.3×10^{-1}	4.1×10^{-2}
${ }^{14} \mathrm{~N}^{\text {c }}$,	99.6	1.9338	7.2	1.0×10^{-3}	1×10^{-2}
${ }^{17} \mathrm{O}$	$5 / 2$	0.037	-3.6279	13.6	1.1×10^{-5}	-2.6×10^{-2}
${ }^{23} \mathrm{Na}$	3/2	100.0	7.0801	26.5	9.3×10^{-2}	1×10^{-1}
${ }^{25} \mathrm{Mg}$	5/2	10.1	-1.639	6.1	2.7×10^{-4}	2.2×10^{-1}
${ }^{27} \mathrm{Al}$	$5 / 2$	100.0	6.9760	26.1	2.1×10^{-1}	1.5×10^{-1}
${ }^{33} \mathrm{~S}$	3/2	0.76	2.055	7.7	1.7×10^{-5}	-5.5×10^{-2}
${ }^{35} \mathrm{Cl}$	3/2	75.5	2.6240	9.8	3.6×10^{-3}	-1×10^{-1}
${ }^{37} \mathrm{Cl}$	3/2	24.5	2.1842	8.2	6.7×10^{-4}	-7.9×10^{-2}
${ }^{39} \mathrm{~K}^{\text {d }}$	3/2	93.1	1.2498	4.7	4.8×10^{-4}	4.9×10^{-2}
${ }^{43} \mathrm{Ca}$	7/2	0.15	-1.8025	6.7	8.7×10^{-6}	$2 \times 10^{-1 e}$
${ }^{45} \mathrm{Sc}$	7/2	100.0	6.5081	24.3	3.0×10^{-1}	-2.2×10^{-1}
${ }^{47} \mathrm{Ti}$	5/2	7.3	-1.5105	5.6	1.5×10^{-4}	2.9×10^{-1}
${ }^{49} \mathrm{Ti}$	7/2	5.5	-1.5109	5.6	2.1×10^{-4}	2.4×10^{-1}
${ }^{51} \mathrm{~V}^{\text {d }}$	7/2	99.8	7.0453	26.3	3.8×10^{-1}	-5×10^{-2}
${ }^{53} \mathrm{Cr}$	3/2	9.6	-1.512	5.7	8.6×10^{-5}	3×10^{-2}
${ }^{55} \mathrm{Mn}$	5/2	100.0	6.608	24.7	1.8×10^{-1}	4×10^{-1}
${ }^{59} \mathrm{Co}$	7/2	100.0	6.317	23.6	2.8×10^{-1}	3.8×10^{-1}
${ }^{61} \mathrm{Ni}$	3/2	1.2	-2.394	8.9	4.1×10^{-5}	1.6×10^{-1}
${ }^{63} \mathrm{Cu}$	3/2	69.1	7.0974	26.5	6.5×10^{-2}	-2.1×10^{-1}
${ }^{65} \mathrm{Cu}$	3/2	30.9	7.6031	28.4	3.6×10^{-2}	-2.0×10^{-1}
${ }^{67} \mathrm{Zn}$	S/2	4.1	1.6768	6.3	1.2×10^{-4}	1.6×10^{-1}
${ }^{69} \mathrm{Ga}$	3/2	60.4	6.4323	24.0	4.2×10^{-2}	1.9×10^{-1}
${ }^{71} \mathrm{Ga}$	3/2	39.6	8.1731	30.6	5.7×10^{-2}	1.2×10^{-1}
${ }^{73} \mathrm{Ge}$	9/2	7.8	-0.9357	3.5	1.1×10^{-4}	-1.8×10^{-1}
${ }_{75}^{75} \mathrm{As}$	3/2	100.0	4.595	17.2	2.5×10^{-2}	2.9×10^{-1}
${ }^{79} \mathrm{Br}$	3/2	50.5	6.7228	25.1	4.0×10^{-2}	3.7×10^{-1}
${ }^{81} \mathrm{Br}$	3/2	49.5	7.2468	27.1	4.9×10^{-2}	3.1×10^{-1}

Table 2.2 NMR properties of some quadrupolar nuclei (cont'd)

Isotope	Spin	Natural abundance/ \%	Magnetogyric ratio ${ }^{b} /$ $10^{7} \mathrm{rad} \mathrm{~T}{ }^{-1} \mathrm{~s}^{-1}$	Relative NMR frequency/ MHz	Relative receptivity	Quadrupole moment ${ }^{b}$ / $10^{-28} \mathrm{~m}^{2}$
${ }^{87} \mathrm{Rb}^{\text {d }}$	3/2	27.9	8.7807	32.8	4.9×10^{-2}	1.3×10^{-1}
${ }^{87} \mathrm{Sr}$	9/2	7.0	-1.163	4.3	1.9×10^{-4}	3×10^{-1}
${ }^{91} \mathrm{Zr}$	$5 / 2$	11.2	-2.4959	9.3	1.1×10^{-3}	$-2.1 \times 10^{-1 /}$
${ }^{93} \mathrm{Nb}$	9/2	100.0	6.564	24.5	4.9×10^{-1}	-2.2×10^{-1}
${ }^{95} \mathrm{MO}$	5/2	15.7	1.750	6.5	5.1×10^{-4}	$\pm 1.2 \times 10^{-1}$
${ }^{97} \mathrm{Mo}$	$5 / 2$	9.5	-1.787	6.7	3.3×10^{-4}	± 1.1
${ }^{99} \mathrm{Ru}$	$5 / 2$	12.7	1.234^{8}	4.6	1.5×10^{-4}	7.6×10^{-2}
${ }^{101} \mathrm{Ru}$	$5 / 2$	17.1	1.383^{8}	5.2	2.8×10^{-4}	4.4×10^{-1}
${ }^{105} \mathrm{Pd}$	$5 / 2$	22.2	-1.23	4.6	2.5×10^{-4}	8×10^{-1}
${ }^{115} \mathrm{In}^{\text {d }}$	9/2	95.7	5.8908	22.0	3.4×10^{-1}	8.3×10^{-1}
${ }^{121} \mathrm{Sb}$	$5 / 2$	57.3	6.4355	24.0	9.3×10^{-2}	-2.8×10^{-1}
${ }^{123} \mathrm{Sb}$	7/2	42.7	3.4848	13.0	2.0×10^{-2}	-3.6×10^{-1}
${ }^{127}$ I	$5 / 2$	100.0	5.3817	20.1	9.5×10^{-2}	-7.9×10^{-1}
${ }^{131} \mathrm{Xe}^{\text {c }}$	3/2	21.2	2.206	8.2	5.9×10^{-4}	-1.2×10^{-1}
${ }^{133} \mathrm{Cs}$	7/2	100.0	3.5277	13.2	4.8×10^{-2}	-3×10^{-3}
${ }^{137} \mathrm{Ba}^{\text {d }}$	3/2	11.3	2.988	11.1	7.9×10^{-4}	2.8×10^{-1}
${ }^{133} \mathrm{La}$	7/2	99.9	3.801	14.2	6.0×10^{-2}	2.2×10^{-1}
${ }^{177} \mathrm{Hf}$	7/2	18.5	1.081	4.0	2.6×10^{-4}	4.5
${ }^{179} \mathrm{Hf}$	9/2	13.8	-0.679	2.5	7.4×10^{-5}	5.1
${ }^{181} \mathrm{Ta}$	7/2	99.99	3.22	12.0	3.7×10^{-2}	3
${ }^{185} \mathrm{Re}$	5/2	37.1	6.077	22.7	5.1×10^{-2}	2.3
${ }^{187} \mathrm{Re}$	$5 / 2$	62.9	6.138	22.9	8.8×10^{-2}	2.2
${ }^{189} \mathrm{Os}{ }^{\text {c }}$	3/2	16.1	2.096	7.8	3.9×10^{-4}	8×10^{-1}
${ }^{191} \mathrm{Ir}$	3/2	37.3	0.4643	1.7	9.8×10^{-6}	1.1
${ }^{193} \mathrm{Ir}$	3/2	62.7	0.5054	1.9	2.1×10^{-5}	1.0
${ }^{197} \mathrm{Au}$	3/2	100.0	0.4625	1.7	2.6×10^{-5}	5.9×10^{-1}
${ }^{201} \mathrm{Hg}^{\text {c }}$	3/2	13.2	-1.7776	6.6	1.9×10^{-4}	4.4×10^{-1}
${ }^{209} \mathrm{Bi}$	9/2	100.0	4.2342	16.2	1.4×10^{-1}	-3.8×10^{-1}

${ }^{a}$ In general, radioactive nuclei, the rare gases, and the lanthanides are omitted. All the lanthanides except cerium have potentially useful NMR isotopes. ${ }^{\text {b }}$ G.H. Fuller, J. Phys. Chem. Ref. Data, 5, 835 (1976), except where otherwise stated. ${ }^{\text {c }}$ A spin $1 / 2$ isotope also exists. ${ }^{d}$ Other less important quadrupolar isotopes also exist. ' R. Neumann, F. Träger, J. Kowalski and G. zu Putlitz, Z. Physik, A279, 249 (1976). ${ }^{\text {f }}$ S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen and F. Träber, Z. Physik, A286, 125 (1978). ${ }^{8}$ C. Brévard and P. Granger, J. Chem. Phys., 75, 4175 (1981).

The NMR Experiment

http://www-keeler.ch.cam.ac.uk/lectures/

Chapter 3: The Vector Model
Chapter 4: Fourier Transformation and Data Processing
Chapter 5: How the Spectrometer Works

NMR Spectrometers

- Typical now are 5-10T magnets - must be very stable and highly homogeneous
- RF transmitter and pick-up coils
- Decoupler
- Recording device, computer for Fast Fourier Transforms, FID storage

More Experimental Aspects

- Must lock on a resonance frequency of a nucleus that is not the one being measured to maintain stability. ${ }^{1} \mathrm{H}$ NMR uses ${ }^{2} \mathrm{H}$ (i.e., D).
- Probe is at the center of the field and consists of a sample holder with coils. The radiofrequency of the nucleus under investigation is applied to the sample via the transmitter coil, and, at resonance, a voltage is induced in the receiver coil which detects sample magnetization.
- The sample is spinning during the experiment to ensure optimum field homogeneity. The sample holder acts as a turbine driven by compressed air.
- Most instruments have another coil used as decoupler and a variable temperature device.

NMR Instrumentation

Magnet - Normally superconducting. Some electromagnets and permanent magnets (EM-360, EM-390) still around.
Frequency generator - Creates the alternating current (at ω_{r}) that induces \mathbf{H}_{1}. Continuous wave or pulsed.
Detector - Subtracts a constant base frequency very close to ω_{0} that is essentially the frequency of the "rotating frame", ω_{r}. The output frequencies, $\omega_{0}-\omega_{\mathrm{r}}$, are much lower and much easier to deal with. (In this respect, an NMR machine is much like a an expensive FM radio.)
Recorder - XY plotter, oscilloscope, computer, etc.

Macroscopic Magnetization

The molar bulk nuclear magnetization $\left(H_{0}=\right.$ applied field $)$,

$$
M=g_{N}^{2} \frac{\mu_{N}^{2} N_{\mathrm{A}}}{3 k_{B} T} I(I+1) H_{0}=\gamma_{N}^{2} \hbar^{2} \frac{N_{\mathrm{A}}}{3 k_{B} T}[I(I+1)] H_{0}
$$

- This applies to a mole of nuclei with spin I and is derived in exactly the same way as for Curie's law for electronic magnetic moments.
- It is very small, since $\mu_{N}=\left(\mu_{B} / 1836\right)$.

Resultant Magnetization

- At equilibrium, there is no transverse component to the magnetization.
- In many instances, the behavior of M_{0} is envisioned as it "evolves" in NMR experiments.

Iggo, Sec .1-12

Resultant Magnetization

- At equilibrium, there is a slight excess of "spins-up", but no net transverse component to the magnetization.

Adapted from http://tonga.usip.edu/gmoyna/ NMR_lectures/NMR_lectures.html, lecture 1

Basic Pulse Experiment Assume one type of nucleus
a) Begin at equilibrium magnetization for the applied field.
b) Perturb the system with a transverse RF pulse and \mathbf{M} will precess about the zaxis at the Larmor frequency, $\omega_{0}=\gamma H_{0}$.

Basic Pulse Experiment - Assume one type of nucleus

a) Apply a perturbing field, H_{1}, oscillating at angular frequency ω_{0} along the x-axis. The energy source is an oscillating electromagnetic radiation generated by an alternating current:

b) The linear oscillating field H_{1} can be described as a superposition of two fields rotating away from the x-axis:

c) We can restrict attention to the circular component moving in the same direction as the precession of \mathbf{M}.

Basic Pulse Experiment

$$
\omega_{0}=\gamma_{N} H_{0}
$$

\mathbf{H}_{1}, oscillating at angular frequency ω_{0} in the laboratory frame, follows M's motion around the z-axis and applies a torque to \mathbf{M} that drives \mathbf{M} into the $x y$-plane.

Motion of \mathbf{M} in the Lab Frame

The magnetization vector, M, traces a complex path (referred to as nutation) in the laboratory frame when rf field \mathbf{H}_{1} is applied.
Most vector diagrams of M therefore refer the rotating frame rotating at the Larmor frequency.

Motion of \mathbf{M} in the Lab Frame

View in the rotating frame

- If we adopt a frame of

$$
H_{1}=H_{1}\left(\omega_{r}\right) ; \omega_{r} \simeq \omega_{0}=\gamma H_{0}
$$

It is understood that 'tip angle diagrams' refer to the rotating frame.
reference that rotates at an angular frequency at (or very near to) $\omega_{0}, \mathbf{H}_{1}$ and \mathbf{M} are fixed (or nearly fixed) in Intigeneral, $\gamma H_{1} \gg\left|\gamma H_{0}-\omega_{r}\right|$

- If \mathbf{H}_{1} is applied as a pulse for time $t_{\mathrm{p}}(\sim 10 \mu \mathrm{~s})$, the 'tip angle', θ, through which \mathbf{M} is tilted is $\theta=\gamma H_{1} t_{\mathrm{p}}$.
Usually, the time of the pulse is referred to by the tip angle (i.e., as a $\pi / 2$

More than one kind of nucleus

Effect of a $\pi / 2$ pulse on \mathbf{M} paths: path a: on resonance $\left(\omega_{\mathrm{a}}=\omega_{r}\right)$ path $\mathbf{b}: \gamma H_{1}=2\left|\omega_{\mathbf{b}}-\omega_{r}\right|$ path $\mathbf{c}: \gamma H_{1}=\left|\omega_{\mathbf{c}}-\omega_{r}\right|$ path d: $1.5 \gamma H_{1}=\left|\omega_{\mathbf{d}}-\omega_{r}\right|$ A,B,C,D: respective effective field directions.

- Inequivalent nuclei have different Larmor frequencies.
- It is therefore impossible for $\mathbf{H}_{1}\left(\omega_{r}\right)$ to be exactly "on resonance" with all the lines in the spectrum.
- The greater a peak is offset from ω_{r}, the greater those nuclei's magnetizations will be from those which are on resonance.
- For nuclei b, c, and d, this pulse is "soft" and not really a $\pi / 2$ pulse. To make the pulse "hard", we want to increase H_{1} and shorten t_{p}.

Hard Pulse - Example

- Consider a proton spectrum spanning 10 ppm to be measured on a 500 MHz spectrometer
- Put the transmitter (source of $\left.\mathbf{H}_{1}(\omega)\right)$ near 5 ppm
- Maximum offset $\approx 5 \times 500$ $\mathrm{Hz}=2500 \mathrm{~Hz}$
- On a typical spectrometer, a 90° pulse might last about $12 \mu \mathrm{~s}$.
Is the RF power "strong" over all the spectrum?

transmitter
frequency

Range of offsets one might see in a typical proton spectrum. If the transmitter frequency is chosen as shown, the maximum offset of a resonance will be 5 ppm .

Hard Pulse - Example

- Consider a proton spectrum spanning 10 ppm to be measured on a 500 MHz spectrometer
- Put the transmitter (source of $\left.\mathbf{H}_{1}(\omega)\right)$ near 5 ppm
- Maximum offset $\approx 5 \times 500 \mathrm{~Hz}=2500 \mathrm{~Hz}$
- On a typical spectrometer, a 90° pulse might last about $12 \mu \mathrm{~s}$. Calculating,
The tip angle is given by $\theta_{\text {tip }}=\gamma H_{1} t_{\text {pulse }}$
Therefore, $\omega_{1}=\gamma H_{1}=\frac{\theta_{\text {tip }}}{t_{\text {pulse }}}=\frac{\pi / 2}{12 \times 10^{-6} \mathrm{~s}}=1.3 \times 10^{5} \mathrm{~s}^{-1}=130000 \mathrm{radians} \mathrm{s}^{-1}$ Maximum offset is $2 \pi \times 2500 \mathrm{~Hz}=15700$ radians s $^{-1}$
- RF field frequency is about 8 times the offset. \checkmark

Data Acquisition

- After the pulse is applied, data is collected as "Free Induction decays" (FIDs) until the signal begins to descend into the noise.
- FIDs are Fourier transformed to pull our their characteristic frequencies (or their differences with respect to a reference frequency).

Basic 1-Pulse FT NMR Experiment

- Summary: After the pulse, the time-domain FID data is collected over the "acquisition time". Then there is a delay time to allow the spin system to return to equilibrium...then another pulse...

http://www.scs.uiuc.edu/~mainzv/Basics/basics.htm

Peak intensities and Relaxation times

The intensity observed for a given resonance $\left(I_{A}\right)$ is proportional to the extent to which the pulse induced magnetization decays to its equilibrium value:

$$
\begin{aligned}
& I_{A} \propto\left(M_{0}-M_{z}(0)\right)\left(1-e^{-\tau / T_{1 A}}\right) \\
& \frac{[A]}{[B]}=\frac{I_{A}}{I_{B}} \times \frac{1-e^{-\tau / T_{1 B}}}{1-e^{-\tau / T_{1 A}}}
\end{aligned}
$$

M_{0} is the equilibrium longitudinal magnetization, $M_{z}(0)$ is the longitudinal magnetization after the perturbing pulse, τ is the acquisition time, and $T_{1 A}$ is the spin-lattice relaxation time for nucleus A. See Canet, Chapter 4.

Measuring T_{1} : Inversion Recovery

- Measurement of T_{1} is important, as the relaxation rate of different nuclei in a molecule can tell us about their local mobility. We cannot measure it directly on the signal or the FID because T_{1} affects magnetization we don't detect. We use the following pulse sequence:

- analyze after the π pulse:

- we are letting the signal decay by different amounts exclusively under the effect of longitudinal relaxation (T_{1}), we'll see how different t_{D} 's affect the intensity of the FID and the signal after FT.

Figure 7-3.
$22.63 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra of ethylbenzene (1), recorded by the inversion recovery method (Fig. 7-2) with $\tau=1,5,10,15,30,50$ and $100 \mathrm{~s}[1]$.

Inversion Recovery, cont.

If we plot intensity versus time (\mathbf{t}_{d}), we get the following:

Spin Echo - T_{2} measurement

- Measurement of T_{2} can in principle be performed by calculating the decay in the FID envelope (which determines the line widths) because the signal on $\mathbf{M}_{\mathbf{x y}}$, in theory, decays only due to transverse relaxation. In practice, however, contributions due to field inhomogeneity can dominate.
- The spin-echo pulse sequence allows us to avoid contributions inhomogeneous broadening:

Spin echoes (continued)

- We do the analysis after the 90_{y} pulse:

-Now we return to <xyz> coordinates:

The 180° pulse: refocusing

Vectors that lag in the delay are jumped ahead in the 180° pulse. The second delay refocuses them.

- Different nuclei in the sample move away from the y axis (to which \mathbf{M} is tipped in the $\pi / 2$ pulse) at different rates because of chemical shift differences and field inhomogeneity. The Hahn spin-echo sequence allows them to refocus at the $-y$ axis. But transverse relaxation still attenuates the magnitude of \mathbf{M}.
- If we acquire an FID

Spin echoes (continued)

 right after the echo, the intensity of the signal after FT will affected only by T_{2} relaxation and not by dephasing due to an inhomoge-neous B_{o}. We repeat this for different t_{D} 's and plot the intensity against $2 \cdot \mathrm{t}_{\mathrm{D}}$. In this case it's a simple exponential decay, and fitting

A Little Theory of 1-D NMR

Origins of Chemical Shifts (Shielding)

$$
\begin{gathered}
H=H_{0}(1-\sigma) ; \quad \sigma=\sigma_{d}+\sigma_{p} \\
\sigma_{d}(z z)=\frac{e^{2}}{2 m c^{2}}\langle 0| \frac{x^{2}+y^{2}}{r^{2}}|0\rangle \\
\sigma_{p}(z z)=-\left(\frac{e \hbar}{2 m c}\right)^{2} \sum_{n}\left\{\frac{\langle 0| L_{z}|n\rangle\langle n| \frac{2 L_{z}}{r^{3}}|0\rangle}{E_{n}-E_{0}}+\frac{\langle 0| \frac{2 L_{z}}{r^{3}}|n\rangle\langle n| L_{z}|0\rangle}{E_{n}-E_{0}}\right\}
\end{gathered}
$$

- Shielding consists of a diamagnetic $\left(\sigma_{d}\right)$ and paramagnetic $\left(\sigma_{p}\right)$ response of the electrons to the applied field.
- $\quad \sigma_{d}$ arises from a first-order effect, reflecting the electron density distribution in the ground state. (Often dominant in proton spectra.)
- σ_{p} arises from a second-order mixing of paramagnetic excited states into the ground state by the applied field (much like TIP). Often dominant for other nuclei.

Chemical Shift Example: $\left[\mathrm{Zr}_{6} \mathrm{BCl}_{12}(\mathrm{MeCN})_{(6-x)} \mathrm{Cl}_{x}\right]^{1-x}$

11B NMR spectra for $\mathrm{Rb}_{5} \mathrm{Zr}_{6} \mathrm{Cl}_{18} \mathrm{~B}$ in acetonitrile with (a) no added ligand, (b) 6 eq. added TlPF_{6}, and (c) 10 eq. added PPNCl. Labeling on the peaks ($x=0-6$) indicates the number of terminal chlorides in $\left[\left(\mathrm{Zr}_{6} \mathrm{BCl}_{12}\right)\left(\mathrm{NCCH}_{3}\right)_{6-x} \mathrm{Cl}_{x}\right]^{1-x}$.

Chemical Shift Example: $\left[\mathrm{Zr}_{6} \mathrm{BCl}_{12}(\mathrm{MeOH})_{(6-x)} \mathrm{Py}_{x}\right]^{+}$

More on Spin-spin Coupling

- The nuclear spin Hamiltonian for two interaction nuclei, A and X, is

$$
\mathcal{H}=-h\left(v_{A} I_{A}^{z}+v_{X} I_{X}^{z}\right)+h J_{A Z} \mathbf{I}_{A} \cdot \mathbf{I}_{X}
$$

where I_{A}^{z} and I_{X}^{z} are operators for the
z-component the spin on A and X, and $J_{A X}$ is
the coupling constant for A interacting with X.

- This Hamiltonian will yield the energy expression given earlier (when chemical shift differences are much greater than couplings, $\left|v_{A}-v_{B}\right| \gg J_{A B}$.

1st-Order Spectral Case

2nd-Order Spectral Case

See Drago, Chapter 7.
$I_{2,3} \sim 1+\sin 2 \theta$

In the 2nd-order case, $\left|v_{A}-v_{X}\right| \sim J_{A X}$, mixing of the spin functions leads to intensity changes (the rooftop effect) and line shifting.

Range of cases

Miscellaneous Examples

Coupling Examples

(a) ${ }^{31} \mathrm{P}$ spectrum of $\mathrm{P}(\mathrm{OMe})_{3} \stackrel{20 \mathrm{~Hz}}{\square}$
and (b) ${ }^{29} \mathrm{Si}$ spectrum of
SiMe_{4}. In the second case the outermost lines are too weak to be seen. Weak lines between the strong ones arise from small amounts of ${ }^{13} \mathrm{C}$

Coupling of spin-1/2 nuclei works
in pretty
much the same way in all cases.

Coupling to non-spin-1/2 Nuclei

Fig 2.14 ${ }^{1} \mathrm{H}$ NMR spectrum of GeH_{4}. The ten evenly spaced lines are due to the 8% of the molecules which contain ${ }^{73} \mathrm{Ge}(I=9 / 2)$. The intense central line arises from all other isotopic species.
${ }^{73} \mathrm{Ge}(I=9 / 2,8 \%$ abundance) couples to equivalent protons in ${ }^{73} \mathrm{GeH}_{4}$.
(${ }^{1} \mathrm{H}$ spectrum)

\qquad

Coupling to Quadrupole Nuclei

Calculated band shapes for a spin $1 / 2$ nucleus (${ }^{1} \mathrm{H}$) coupled to a spin 1 nucleus (${ }^{(14} \mathrm{N}$). The shape depends on the ratio of ${ }^{14} \mathrm{~N}$ relaxation rate to the NH coupling. For very fast relaxation just a single line is observed, while for slow relaxation there are three lines of equal intensity.

- Because spin-spin coupling induces spin wavefunction mixing, the relaxation of a quadrupole nucleus is partially "transferred" to spin-1/2 nuclei to which it is coupled.

$\mathrm{Si}_{2} \mathrm{H}_{6}\left({ }^{1} \mathrm{H}\right.$ spectrum $)$

$\mathrm{Si}_{2} \mathrm{H}_{6}\left({ }^{1} \mathrm{H}\right.$ spectrum $)$

${ }^{29} \mathrm{Si}$ (I = 1/2, 4.7\% abundance)

$\left[\mathrm{Zr}_{6} \mathrm{BCl}_{12}\left(\mathrm{PEt}_{3}\right)_{6}\right]^{+}+?$

a) ${ }^{11 B}$ spectrum of $\left[\mathrm{Zr}_{6} \mathrm{BCl}_{12}\left(\mathrm{PEt}_{3}\right)_{6}\right]^{+}$ plus an impurity.
b) ${ }^{31} \mathrm{P}$ spectrum of $\left[\mathrm{Zr}_{6} \mathrm{BCl}_{12}\left(\mathrm{PEt}_{3}\right)_{6}\right]^{+}$ plus an impurity.

What is the impurity?

11B (I = 3/2, 81.2\% abundance), 10B (I = 3, 18.8\% abundance)

1st and 2ndorder spectra

a) $360 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SPF}_{2}$. (1st order)
b) $80 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SPF}_{2}$. (2nd order)

Correlations like the well-known Karplus relation shown here ultimately derive from the manner in which s-electron density is involved in wavefunctions that spread over two coupled nuclei.

Fig. 46.
The vicinal Karplus correlation. Relationship between dihedral angle and coupling constant for vicinal protons.

Coupling: Structural Correlations

For 3-bond coupling constants the empirical relation here is useful:
${ }^{3} J_{X Y}=A \cos 2 \phi+B \cos \phi+C$

$J_{\mathrm{AM}}>J_{\mathrm{AX}}>J_{\mathrm{MX}}$

Figure 12.12. $100-\mathrm{MHz}$ spectrum of styrene oxide $\left(25 \%\right.$ in $\left.\mathrm{CCl}_{4}\right)$. The part of the spectrum due to aromatic protons is not shown.
trans- $\left.\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}_{2} \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}$: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$: First- and Second-order Coupling

103Rh I $=1 / 2$ abundance $=100 \%$

Correlations ultimately derive from the manner in which s-electron density is involved in wavefunctions that spread over two coupled nuclei.

Fig. 2.19 The size of the coupling constant is a good indication of the interbond angle, being smaller between similar groups in a cis orientation than when the coupling nuclei are mutually trans. Here the ${ }^{31} p$ NMR spectrum of a palladium hydride complex is shown. The larger couplings are between trans groups. From data in Braunstein et al. Inorg. Chem., 1992, 31, 411.

A Typical (Simple) Structural problem

2.4 The $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum} \mathrm{of} \mathrm{the} \mathrm{carbonyl} \mathrm{groups} \mathrm{in} \mathrm{one} \mathrm{isomer} \mathrm{of} \mathrm{[W(CO)}{ }_{4} \mathrm{P}(\mathrm{OMe})_{3}(\mathrm{SPh})\right]^{-}$ is shown in Fig. 2.46. Identify the isomer and account for the form of the spectrum. What would you expect to see in the ${ }^{13} \mathrm{C}$ spectrum of the other isomer? [The figure is adapted, with permission, from D.J. Darensbourg, K.M. Sanchez and J. Reibenspies, Inorg. Chem., 27, 3636 (1988). Copyright (1988) American Chemical Society.

Fig. 2.46

Chemical Shift Equivalence (isochronous nuclei)

- Two isomers of 1,3-dibromo-1,3diphenylpropane
- How many chemicalshift equivalent sets of aliphatic protons in each isomer?

Magnetic (In)equivalence

p-fluoronitrobenzene

difluoroethylenes

- Magnetically equivalent nuclei are coupled equally to every third nucleus in the spin system.
- In each molecule the protons are chemical shift equivalent?
- Which sets are magnetically equivalent?

Magnetic (In)equivalence

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (simulated)

- Magnetically equivalent nuclei are coupled equally to every third nucleus in the spin system.
- The "unknown" here is an easy one, but the spectrum is more complicated than you might have expected.

Magnetic (In)equivalence

(

1H spectra

Notation for labeling nuclei

- Chemically and magnetically equivalent nuclei given the same label. (e.g., A)
- Chemically, but not magnetically equivalent nuclei given primes. (e.g, AA^{\prime} for two, $\mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime}$ for three, etc.)
- Nuclei with small chemical shift differences (smaller or comparable to coupling between them) given alphabetically close labels (e.g., A, B, C, D, etc.)
- Inequivalent nuclei with large chemical shift differences given alphabetically distant labels (e.g., AMX, for three)
- One can describe a mix of types of nuclei
- $\quad A_{2} B M X Y$ is a six-spin system with two equivalent nuclei (A), strongly coupled (compared to $\Delta v_{A B}$) to one nucleus B, weakly coupled to one nucleus $M\left(v s \Delta v_{A M}\right)$ and very weakly coupled to X \& Y
- M is weakly coupled to all nuclei
- B is only strongly coupled to A
- X \& Y are strongly coupled to each other and weakly to all other nuclei

Examples

(ignoring phenyl groups)

- $\mathrm{AA}^{\prime} \mathrm{MM}^{\prime}$
- ABM_{2}

More Examples

P-fluoronitrobenzene

- $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ (in a sufficiently high field, $A^{\prime}{ }^{\prime} M M^{\prime}$)
difluoroethylenes

all $A A^{\prime} X X^{\prime}$ ($A A^{\prime} M M^{\prime}$ equally good)

Characterize indicated protons as to chemicalshift and/or magnetic equivalence

More Examples (${ }^{31} \mathrm{P}$)

- Both ${ }^{31} \mathrm{PMe}_{3}$ couple to each of the ${ }^{31} \mathrm{PEt}_{3}$ in an equivalent fashion (and vice versa).

More Examples

- The ${ }^{31} \mathrm{PMe}_{3}$ couple to each of the ${ }^{31} \mathrm{PEt}_{3}$ differently (and vice versa), \therefore magnetically inequivalent.
- Sample data:
- $\mathrm{J}_{\mathrm{AB}}=\mathrm{J}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=104 \mathrm{~Hz}$
- $\mathrm{J}_{\mathrm{AA}^{\prime}}=\mathrm{J}_{\mathrm{A}^{\prime} \mathrm{A}}=20 \mathrm{~Hz}$
- $\mathrm{J}_{\mathrm{BB}^{\prime}}=\mathrm{J}_{\mathrm{B}^{\prime} \mathrm{B}}=19.2 \mathrm{~Hz}$
- $\mathrm{J}_{\mathrm{A}^{\prime} \mathrm{B}}=\mathrm{J}_{\mathrm{AB}^{\prime}}=\mathrm{J}_{\mathrm{BA}^{\prime}}=\mathrm{J}_{\mathrm{B}^{\prime} \mathrm{A}}=23 \mathrm{~Hz}$

Expected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ Spectrum

Dynamic NMR

See Chapter 7,
NMR and Chemistry, 4th Edition, J.W. Akitt and B. E. Mann.

Time Scale

$$
\begin{gathered}
\Delta E=\gamma_{N} \hbar H_{0}=h v_{L} \\
v_{L}=\left|\frac{\gamma_{N}}{2 \pi}\right| H_{0} ; \omega_{0}=\gamma_{N} H_{0}
\end{gathered}
$$

including chemical shift: $v=\left|\frac{\gamma_{N}}{2 \pi}\right| H_{0}(1-\sigma)$

- NMR is generally considered to be a slow technique, with a characteristic time scale, $\tau \sim 10^{-}$ 7 s . (Recall, $1 / \tau=v \sim 100 \mathrm{MHz}$.)
- This is actually much faster than rates usually measured with NMR. Reactions with half-lives of $10^{-2} s$ to 10^{-3} s are more typical, I.e., the difference between resonance frequencies.

Example Proton Exchange

$$
\mathrm{CH}_{3}
$$

$50 \% \mathrm{EtOH}$ in CDCl_{3}

Thermodynamic and Kinetic Exchange Parameters

A $\underset{k_{B}}{\stackrel{k_{A}}{\rightleftharpoons}} \mathrm{~B}$
Well below the coalesence point), the individual line widths are given by:

$$
\Delta v_{A}=\frac{k_{A}}{\pi}=\frac{1}{\pi \tau_{A}} \quad ; \quad \Delta v_{B}=\frac{k_{B}}{\pi}=\frac{1}{\pi \tau_{B}}
$$

In the limit of fast exchange (above the coalesence point), the line width is given by:

$$
\Delta v=\frac{4 \pi p_{A} p_{B}\left(\delta v_{A B}\right)^{2}}{k_{A}+k_{B}}
$$

p_{A} and p_{B} are the fractional populations of sites A and B.

Hindered Rotation

A 2-site example illustrating different line-shape regimes in a dynamic process amenable to NMR study.

(a)

Near Fast exchange

Coalescence

Intermediate exchange

Slow exchange

Stopped exchange

Fig. 2.40 (a) Calculated band shapes for various values of exchange rate relative to frequency difference for two equally populated sites. (b) Gasphase ${ }^{13} \mathrm{C}$ NMR spectra of N, N-dimethyl- ${ }^{13} \mathrm{C}_{2}$-formamide, 2.XXXI. The spectra, recorded at 427, 415, 410, 397 and 373 K , show two distinct resonances at low temperatures, when rotation about the central $\mathrm{C}-\mathrm{N}$ bond is rapid. Spectra in (b) are taken, with permission, from B.D. Ross and N.S. True, J. Am. Chem. Soc., 106, 2451 (1984). Copyright (1984) American Chemical Society.

Cyclohexane Interconversion

Another 2-site example illustrating different line-shape regimes in a dynamic process amenable to NMR study.

\rightleftharpoons

Intermediate exchange

T_{C} and k_{C}

If (a) the exchange process is first-order, (b) there is no coupling between exchanging nuclei, and
(c) the two singlets have equal intensities:

For the coalescence temperature, T_{C}, the rate constant, k_{C}, is

$$
k_{C}=\frac{\pi \Delta v}{\sqrt{2}} \cong 2.22 \Delta v
$$

Δv is the chemical shift difference (in Hz) in the absence of exchange (determined at low temperature but extrapolated to high T).

- Even when (a), (b), and (c) are not exactly fulfilled, this is usually a decent estimate for k_{C}.

T_{C} and k_{C}

- Coalescence is defined as the point at which the minimum between the high temperature peaks becomes a flat plateau.

Calculated spectra for exchange between two equally populated sites separated by $40 \mathrm{~Hz} . T_{2}$ values of both sites are 1 s .

$$
k_{C}=\frac{\pi \Delta v}{\sqrt{2}}=\frac{40 \pi}{\sqrt{2}}=88.8 \mathrm{~s}^{-1}
$$

The Slow Exchange Regime

$$
W_{1 / 2}=\frac{1}{\pi T_{2}}
$$

when spin-spin relaxation
is the mechanism controlling a spin's lifetime

Linewidth determined by time a spin spends at one location (nucleus)

$$
W_{1 / 2}=\frac{1}{\pi T_{2}}+\frac{1}{\pi \tau_{\mathrm{ex}}}=\frac{1}{\pi T_{2}}+\frac{k}{\pi}
$$

where k is the rate constant for exchange
When exchange is occurring there are two mechanisms that shorten the lifetime of the spin state

$$
\therefore \quad k=\pi\left[\left(W_{1 / 2}\right)_{\mathrm{ex}}-\frac{1}{\pi T_{2}}\right]=\pi\left[\left(W_{1 / 2}\right)_{\mathrm{ex}}-\left(W_{1 / 2}\right)_{0}\right]
$$

fairly accurate when $\left(W_{1 / 2}\right)_{\mathrm{ex}}$ is substantially larger than $\left(W_{1 / 2}\right)_{0}$

Fluxional Cp Rings

- The η^{1} - and $\eta^{5-C p}$ proton resonances coalesce at $36{ }^{\circ} \mathrm{C}$. (What process must be quite rapid even at $-27{ }^{\circ} \mathrm{C}$?)

T_{C} and $k_{\mathrm{C}}-$ more

- When expressed in ppm, chemical shifts are field independent. But Δv is in Hz , which means that $\Delta v \propto \mathrm{H}$. Therefore, T_{C} and k_{C} increase with the field used in the NMR experiment (and the highest available field may not be the most appropriate).
- Coupling between exchanging nuclei can be handled:

If nuclei A and B are exchanging and are coupled (with constant $J_{A B}$) k_{C} is

$$
k_{C}=\frac{\pi \Delta v}{\sqrt{2}} \cong 2.22 \sqrt{(\Delta v)^{2}+6 J_{A B}^{2}}
$$

An example with Coupling

- H^{A} and H^{B} are clearly inequivalent at $-55{ }^{\circ} \mathrm{C}$, but are equivalent in the fast exchange regime at $35^{\circ} \mathrm{C}$.
- How would this study have changed if carried out on a 300 MHz instrument?

$60 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR signals of the ring protons H^{A} and H^{B}

Complete Line Shape Analysis

- Record spectra at different temperatures, e.g.,
- 3 slow-exchange spectra (incl. 1 stopped-exchange)
$-5-10$ spectra in coalescence regime
-3 spectra in near-fast and fast regime
- Analyze spectrum in stopped exchange regime - Get v's, J's, line-widths ($\Delta \nu_{1 / 2}$'s)
- Calculate spectra in the coalescence regime, varying $k(s)$ until observed and calculated spectra match. Repeat at other temperatures.
- If necessary, calculate spectra in fast-exchange limit.

Evidence for Berry Pseudorotation

Observed and calculated 36.43 MHz ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of $\left[\mathrm{Rh}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{5}\right]^{+}$ in $\mathrm{CHClF}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1)$ at $-114{ }^{\circ} \mathrm{C}$.

pairwise exchange (turnstile) mechanism

Berry pseudorotation (P_{4} pivot)

Activation Parameters

- Use of the Arrhenius plots (Ink vs. $1 / T$) are a lot of work since they require data for a range of temperatures (many measurements and full line-shape analyses)
- Estimate for $\Delta \mathbf{G} \ddagger$ using the Eyring equation is easy with T_{C} in hand:

$$
\begin{gathered}
k=\aleph \frac{\dot{k}_{B} T}{h} e^{-\Delta G^{\ddagger} / R T}=\aleph \frac{k_{B} T}{h} e^{\Delta S^{\ddagger} / R} e^{-\Delta A^{\ddagger} / R T} \quad \text { or } \Delta G^{\ddagger}=R T\left\{23.759+\ln \left(\frac{k}{T}\right)\right\} \\
\left(\text { at } T=298.15 \mathrm{~K}, \frac{k_{B} T}{h}=6.21 \times 10^{12} \mathrm{~s}^{-1}, \aleph \text { is usually taken to be } \sim 1\right)
\end{gathered}
$$

An Eyring plot, $\ln (k / T)$ vs. $1 / T$, would should yield $\Delta \mathrm{H}^{\ddagger}$ and $\Delta \mathrm{S} \ddagger$, but again, much more work. WARNING: This approach is still fraught with the potential for large errors, because the range temperatures on can measure is small, chemical shift dependence on T, linewidth misestimates, poor T calibration, and broadening due to unresolved coupling (see Akitt \& Mann).

More Accurate Activation Parameters

Better activation parameters can be obtained from NMR kinetic studies:
(1) Use different spectrometers, with different frequencies. The frequency difference between resonances varies with field strength when the peak differences are due to chemical shifts (only the ppm values remain the same). For this reason, a rate study might be better carried out on a lower field instrument.
(Coalescence occurs at a lower temperature in lower field.)
(2) Different nuclei might be used (see example).
(3) Different methods are useful in different regimes; e.g., lineshape analysis when rates are within an order of magnitudes of the coalescence rate and magnetization transfer for lower temperatures with slower rates.

How does the ring whiz?

(5)
$\mathrm{H}_{1} \mathrm{FeCp}(\mathrm{CO})_{2}$
(4) (3)

Peaks at $\delta \approx 6.0(B) \& 6.3(\mathbf{A})$ are assigned to $\mathrm{H}_{3,4}$ \& $\mathrm{H}_{2,5}$, respectively.
A resonances collapse faster than B resonances. Mechanism? See problem set!

Competing Mechanisms?

- At $-3^{\circ} \mathrm{C}$, the COD ethylenic protons and the diastereotopic $\left(\mathrm{CH}_{3}\right) \mathrm{P}$ are not exchanging.
- At $67^{\circ} \mathrm{C}$, the COD ethylenic protons are exchanging, but the diastereotopic $\left(\mathrm{CH}_{3}\right)$ P groups are not.
- At $117^{\circ} \mathrm{C}$, the COD ethylenic protons and the diastereotopic $\left(\mathrm{CH}_{3}\right) \mathrm{P}$ are both exchanging.

Competing Mechanisms?

- At $-3^{\circ} \mathrm{C}$, the COD ethylenic protons and the diastereotopic $\left(\mathrm{CH}_{3}\right) \mathrm{P}$ are not exchanging.
- At $67^{\circ} \mathrm{C}$, the COD ethylenic protons are exchanging, but the diastereotopic $\left(\mathrm{CH}_{3}\right) \mathrm{P}$ groups are not.
- At $117^{\circ} \mathrm{C}$, the COD ethylenic protons and the diastereotopic $\left(\mathrm{CH}_{3}\right) \mathrm{P}$ are both exchanging.

Short Questions

- Explain each of the following observations.
(a) $\mathrm{The}{ }^{1} \mathrm{H}$ spectrum of GeH_{4} shows ${ }^{73} \mathrm{Ge}$ satellites but the spectra of GeFH_{3} and GeClH_{3} do not.
(b) The ${ }^{13} \mathrm{C}-\{1 \mathrm{H}\}$ NMR spectrum of (bis)allylnickel at 200 K shows three resonances, of equal intensity; at 250 K , only two resonances are observed, in a $2: 1$ intensity ratio.
(c) The ${ }^{1} \mathrm{H}$ NMR spectrum of rigorously dried ${ }^{14} \mathrm{~N}$-ammonia is a broad 1:1:1 triplet that becomes broader as the temperature is lowered; the ${ }^{1} \mathrm{H}$ NMR spectrum of ${ }^{15} \mathrm{~N}$ ammonia containing a trace of $\mathrm{Na}^{15} \mathrm{NH}_{2}$ is a broadened 1:1 doublet that becomes sharper as the temperature is lowered.

Problem

Reaction of IF_{7} and SbF_{5} gives a 1:1 product. The ${ }^{19} \mathrm{~F}$ NMR spectrum contains two sets of resonances: one with 6 lines of equal intensity; the other with overlapping patterns of 6 lines of equal intensity and 8 lines of equal intensity, the former being somewhat stronger. Explain.
${ }^{121}$ Sb $^{5 / 2}, 57.3 \%, 121$ Sb $7 / 2,42.7 \%, 127 / 5 / 2,100 \%$

Problem

What coupling pattern would you expect to observe for a single proton coupled to (a) one and (b) two equivalent 11B nuclei?
(c) Same as (b) but with a "real sample?
${ }^{11} \mathrm{~B} 3 / 2,80.4 \%, 10 \mathrm{~B} 3,19.6 \%$

Problem

The ${ }^{1} \mathrm{H}$ NMR spectrum of GeFH_{3} consists of two lines separated by 42 Hz . What are the relative positions and intensities of all the lines in the ${ }^{19} \mathrm{~F}$ spectrum of
(a) GeDFH_{2}
(b) $\mathrm{GeD}_{2} \mathrm{FH}$
(c) $\mathrm{GeD}_{3} \mathrm{~F}$

Problem

$\mathrm{W}(\mathrm{CO})_{6}$ reacts with NaBH_{4} to give an anionic product. Its tetraethylammonium salt has the empirical composition $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{10} \mathrm{~W}_{2}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum includes a triplet, intensity ratio 1:6:1, at δ -22.5 ppm , with a separation between the outer peaks of 42 Hz . What can you deduce about the structure of the anion?

$$
183 \mathrm{~W}, \mathrm{~S}=1 / 2,14.4 \%
$$

