Magnetic Properties

Fundamentals and structural correlations

Magnetism References

- A. F. Orchard, "Magnetochemistry".
- Drago, "Physical Methods in Chemistry", Chapter 11.
- C. J. O'Connor, Prog. Inorg. Chem., 1982, 29, 203.
- R. L. Carlin, "Magnetochemistry", Springer-Verlag, Berlin, 1986.
- F. E. Mabbs and D. L. Machin, "Magnetism and Transition Metal Complexes", Chapman and Hall, London, 1973.
- W. E. Hatfield, Magnetic Measurements, Chapter 4 in "Solid State Chemistry: Techniques", A. K. Cheetham and P. Day, Eds., Clarendon Press, Oxford, 1987.
- B. N. Figgis, M. A. Hitchman, "Ligand Field Theory and its Applications", Chapter 9.

Energy relationships

$$
\begin{gathered}
E=\frac{H B}{8 \pi} \quad\left(\mathrm{erg} / \mathrm{cm}^{3}\right) \\
E=\frac{H\left(1+4 \pi \chi_{\mathrm{v}}\right) H}{8 \pi}=\left(\frac{1}{8 \pi}+\frac{\chi_{\mathrm{v}}}{2}\right) H^{2} \\
\text { In a vacuum, } E_{\mathrm{vac}}=\frac{H^{2}}{8 \pi} \quad\left(\chi_{v}=0\right) \\
E-E_{\mathrm{vac}}=\frac{\chi_{\mathrm{v}}}{2} H^{2} \\
\text { or, choosing } E_{\mathrm{vac}} \text { to be the zero of energy } \\
E=\frac{\chi_{\mathrm{v}}}{2} H^{2} \\
F_{z}=\frac{d E}{d z}=\chi_{\mathrm{v}}\left(H \frac{d H}{d z}\right)
\end{gathered}
$$

- $H B / 8 \pi$ is the magnetic energy 'stored' in any medium. (Seems weird, but if you integrate $H B / 8 \pi$ over all space with no sample present, you obtain the energy that was needed to magnetize the magnet!)
F_{z} is the force that a volume element of the sample 'feels' as it moves in an inhomogeneous magnetic field (i.e., in or out of the field of a magnet along the z-direction).

χ measurement; Faraday method

- Pole pieces shaped to yield field gradient requirements (or "shaping coils" mounted to faces of the magnet).
- Advantages: good sensitivity; no 'packing error'; Small sample allows good thermostatting of sample
- Disadvantage: magnetic anisotropies difficult to measure.

5

The Basic Schemes

Zero temperature 'snapshots' of magnetic moments in each paramagnetic (zero field), ferromagnetic, antiferromagnetic, and ferrimagnetic materials.

Ferromagnet

Antiferromagnet

χ measurement; Evans (solution) NMR method Evans, J. Chem. Soc., 1959, 2003.
 Oatfeld \& Cohen, J. Chem. Ed., 1972, 49, 829.

- Two, concentric, NMR tubes are used
- Inner tube: internal standard, dissolved in solvent
- Outer tube: internal standard, dissolved in solvent, plus paramagnetic solution species to be measured
The presence of paramagnetic ions in the outer tube shifts the field felt by the standard molecules in the outer tube
shift of resonance field $\rightarrow \frac{\Delta H}{H}=\frac{2 \pi}{3} \Delta \chi_{v}$
where $\Delta \chi_{\mathrm{v}}$ is the difference in the volume susceptibilities of the liquids gram susceptibility of paramagnetic substance:

$$
\chi_{\mathrm{g}}=\chi_{0}\left(1+\frac{\rho_{0}-\rho_{S}}{m}\right)+\frac{3}{2 \pi m} \frac{\Delta v}{v} \leftarrow \text { frequency shift (Hz) }
$$

6

Paramagnet

Ferromagnet

Antiferromagnet

Diamagnetism - Pascal's Constants

All paramagnetic measurements should be corrected for diamagnetism:

$$
\chi_{\text {obs }}=\chi_{\text {para }}+\chi_{\text {dia }}
$$

(+) (-)
These can be estimated using Pascal's constants (from atomic/ionic
$\begin{array}{ll}5 \times \mathrm{H}=5 \times\left(-2.93 \times 10^{-6}\right)=-14.6 \times 10^{-6} & \text { (from atomic/ion } \\ 1 \times \mathrm{C}(\text { ring })=-4.6 \times 10^{-6} & \text { susceptibilities) }\end{array}$
Total: $\quad-50.4 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\left(\right.$ or emu mol ${ }^{-1}$)

Statistical Thermodynamics

Magnetic susceptibility measurements are "bulk property" measurements, and results are averages over the so-called 'ensemble' of molecules in the system.

Probability the an energy level with energy ε_{i} is occupied

$$
p_{i}=\frac{g_{i} e^{-\varepsilon_{i} / k_{B} T}}{\sum_{i} g_{i} e^{-\varepsilon_{i} / k_{B} T}} \text { where } g_{i} \text { is the degeneracy of the } i^{\text {th }} \text { level. }
$$

The 'thermal average' of property A one will measure for a system in equilibrium:
$\langle\mathrm{A}\rangle=\sum_{i} p_{i} A_{i}=\frac{\sum_{i} A_{i} g_{i} e^{-\varepsilon_{i} / k_{B} T}}{\sum_{i} g_{i} e^{-\varepsilon_{i} / k_{B} T}} ;$ where A_{i} is the value of property A in the $i^{\text {th }}$ state

Pascal's Constants not perfect

calc. exptl.
pyridine: $-50.4 \times 10^{-6} \quad-49 \times 10^{-6}$

$-147 \times 10^{-6} \quad-194 \times 10^{-6}$
Fortunately, it is usually the case that $\left|\chi_{\text {para }}\right| \gg\left|\chi_{\text {dia }}\right|$ and errors like this can be tolerated. Nevertheless, if diamagnetic complexes analogous to paramagnetic species can be measured, they yield better estimates.

Magnetization of an Ideal Paramagnet

If we call \bar{m} the average magnetic moment of a paramagnetic molecule,
then $N_{\mathrm{A}} \overline{\mathrm{m}}$ is the molar magnetization the compound in question.
If we apply a magnetic field along the z-axis to a sample of noninteracting molecules, each molecule will experience Zeeman splitting of its energy levels.
$\overline{\mathrm{m}}$ is given by substituting into the formula we have have just presented as follows
$\langle\mathrm{A}\rangle=\frac{\sum_{i} A_{i} g_{i} e^{-\varepsilon_{i} / k_{B} T}}{\sum_{i} g_{i} e^{-\varepsilon_{i} / k_{B} T}} \Rightarrow \overline{\mathrm{~m}}=\frac{\sum_{M_{J}=-J}^{J} \mu_{M_{J}} e^{-E_{M_{J}} / k_{B} T}}{\sum_{M_{J}=-J}^{J} e^{-E_{M_{J}} / k_{B} T}}=\frac{\sum_{M_{J}=-J}^{J} M_{J} g_{J} \mu_{B} e^{M_{J} g_{J} \mu_{B} H / k_{B} T}}{\sum_{M_{J}=-J}^{J} e^{M_{J} g_{J} \mu_{B} H / k_{B} T}}$
What do all the symbols mean?

- J is the total angular momentum, but in many cases, $J \simeq S$.
- M_{J} is the z-component of J, so that in spin-only cases, $M_{J}=M_{S}$.
- $\mu_{M_{J}}$ is the z-component of the magnetic moment for each Zeeman
level, so $\mu_{M_{J}}=M_{J} g_{J} \mu_{B}$. (We can ignore x and y components since
they cancel each out when averaged over all molecules.)
$\cdot E_{M_{J}}$ is the energy of each Zeeman level, so , $E_{M_{J}}=-\boldsymbol{\mu}_{M_{J}} \cdot \mathbf{H}=-M_{J} g_{J} \mu_{B} H{ }_{12}$

13

Magnetization and Susceptibility

$M_{J} g_{J} \mu_{B} H / k_{B} T \ll 1$ at temperatures over a few K. Therefore, we can expand

$$
\left.\begin{array}{rl}
e^{M_{J} g_{J} \mu_{B} H / k_{B} T} & \simeq 1+M_{J} g_{J} \mu_{B} H / k_{B} T \\
\overline{\mathrm{~m}}=\frac{\sum_{M_{J}=-J}^{J} M_{J} g_{J} \mu_{B} e^{M_{J} g_{J} \mu_{B} H / k_{B} T}}{\sum_{M_{J}=-J}^{J} e^{M_{J} g_{J} \mu_{B} H / k_{B} T}} & \simeq g_{J} \mu_{B} \frac{\sum_{M_{J}=-J}^{J} M_{J}\left(1+M_{J} g_{J} \mu_{B} H / k_{B} T\right)}{\sum_{M_{J}=-J}^{J}\left(1+M_{J} g_{J} \mu_{B} H / k_{B} T\right)} \\
=\frac{g_{J}^{2} \mu_{B}^{2} H}{k_{B} T} \frac{\sum_{-J}^{J} M_{J}^{2}}{\sum_{M_{J}=-J}^{J}(1)} \Rightarrow \overline{\mathrm{m}}=\frac{g_{J}^{2} \mu_{B}^{2} H}{3 k_{B} T} J(J+1) \quad\left(\begin{array}{c}
\text { math notes: } e^{x}=1+x \text { for } x \ll 1 \\
\sum_{-J}^{J} x=0 ; \sum_{-J}^{J}(1)=2 J+1 \\
\sum_{-J}^{J} x^{2}=\frac{1}{3} J(J+1)(2 J+1)
\end{array}\right.
\end{array}\right) .
$$

The molar bulk magnetization, M, is then $M=N_{\mathrm{A}} \overline{\mathrm{m}}=\frac{N_{\mathrm{A}}}{3 k_{B} T}\left[g_{J}^{2} J(J+1) \mu_{B}^{2}\right] H$
The molar magnetic susceptibility is then,

$$
\chi_{m}=\frac{\partial M}{\partial H}=\frac{N_{\mathrm{A}}}{3 k_{B} T} \mu_{e f f}^{2} ; \quad \text { and } \quad \mu_{e f f}=g_{J} \sqrt{J(J+1)} \mu_{B} \quad \begin{aligned}
& \text { Curie } \\
& \text { Law } 14 \text { derived }
\end{aligned}
$$

14

Curie's Law

Empirical form:

$$
\chi_{m}=\frac{C}{T}
$$

$$
\chi_{m}=\frac{C}{T} ; \quad \text { and } \quad C=\frac{N_{\mathrm{A}} \mu_{e f f}^{2}}{3 k_{B}} \simeq 0.125 g_{J}^{2} J(J+1)
$$

$$
\text { NOTE: } \frac{N_{\mathrm{A}} \mu_{\mathrm{B}}^{2}}{3 k_{B}}=\frac{\left(6.023 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(9.2740 \times 10^{-21} \frac{\mathrm{erg}}{\mathrm{G}}\right)^{2}}{3\left(1.3807 \times 10^{-16} \frac{\mathrm{erg}}{\mathrm{~K}}\right)} \simeq 0.125 \frac{\mathrm{erg}}{\mathrm{G}^{2}} \mathrm{~K} \mathrm{~mol}^{-1}=0.125 \mathrm{~K} \mathrm{~mol}^{-1}
$$

BUT (!): $\frac{N_{\mathrm{A}} \mu_{\mathrm{B}}^{2}}{3 k_{B}}=\frac{\left(6.023 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(9.2740 \times 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}}\right)^{2}}{3\left(1.3807 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}\right)} \simeq 1.25 \frac{\mathrm{~J}}{\mathrm{~T}^{2}} \mathrm{~K} \mathrm{~mol}^{-1}=0.125 \mathrm{~K} \mathrm{~mol}^{-1}$
Why? $1 \mathrm{G}^{2}=1 \mathrm{erg}$, BUT $1 \mathrm{~T}^{2}=10 \mathrm{~J}$
Using SI units throughout for C : $\mu_{0} \frac{N_{\mathrm{A}} \mu_{\mathrm{B}}^{2}}{3 k_{B}} \simeq\left(4 \pi \times 10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}}\right)\left(1.25 \frac{\mathrm{~J}}{\mathrm{~T}^{2}} \mathrm{~K} \mathrm{~mol}^{-1}\right)=1.57 \times 18^{-6} \mathrm{~m}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$

χ and χ^{-1}

$$
\chi_{m}=\frac{C}{T} ; \quad \text { and } \quad C=\frac{N_{\mathrm{A}} \mu_{e f f}^{2}}{3 k_{B}} \simeq 0.125 g_{J}^{2} J(J+1)
$$

17

Table 5.3 $\mu_{\text {eff }}$ data ($\sim 300 \mathrm{~K}$) for selected compounds of d^{3} and d^{5} ions.

d^{3}	CrCl_{3}	3.90	$\mathrm{K}_{3}\left[\mathrm{Cr}(o x)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	3.62	Spin-Only		
	$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Br}_{3}$	3.77	$\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}$	3.84			
	$\left[\mathrm{Cr}(e n)_{3}\right] \mathrm{Br}_{3}$	3.82	$\mathrm{K}_{3}\left[\mathrm{MoCl}_{6}\right]$	3.79			
	$\left.{ }_{[\mathrm{Cr}}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{3}$	3.81	$\mathrm{K}_{2}\left[\mathrm{MnCl}_{6}\right]$	3.84			
	$\mathrm{K}_{3}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$	3.87	$\left[\mathrm{V}(\text { en })_{3}\right] \mathrm{Br}_{2}$	3.81	Examples		
	$\mathrm{K}_{3}\left[\mathrm{Cr}(\mathrm{NCS})_{6}\right] .4 \mathrm{H}_{2} \mathrm{O}$	3.79	$\left[\mathrm{V}(\text { bpy })_{3}\right] \mathrm{Cl}_{2}$	3.67			
	$\mathrm{K}_{3}\left[\mathrm{Mo}(\mathrm{NCS})_{6}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$	3.70	$\left[\mathrm{Mo}(\text { bpy })_{3}\right]^{\text {Cl }} 3$	3.66			
	$\left(\mathrm{N}^{n} \mathrm{Bu}_{4}\right)_{3}\left[\mathrm{Cr}\left(\mathrm{N}_{3}\right)_{3}\right]_{6}$	3.76	$\mathrm{K}_{4}\left[\mathrm{~V}(\mathrm{CN})_{6}\right]$	3.78			
d^{5}	MnCl_{2}	5.79	FeCl_{3} $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{FeCl}_{4}\right]$ $\left(\mathrm{NH}_{4}\right) \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{K}_{3}\left[\mathrm{Fe}(o x)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 5.73 \\ & 5.88 \end{aligned}$	n	S	$\mu_{\text {eff }}\left(\mu_{\mathrm{B}}\right)$
	$\mathrm{MnBr}_{2} \mathrm{NH}_{4} \mathrm{Mn}^{\left(\mathrm{SO}_{4}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}}$	5.82 5.88			3	3/2	3.87
	${ }^{\left(\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{6}\right)_{6} \mathrm{CCl} \mathrm{Cl}_{2}}$	5.88 5.92		$\begin{aligned} & 5.89 \\ & 5.90 \end{aligned}$			5.87
	$\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{MnCl}_{4}\right]$	5.94			5	$5 / 2$	5.92

High-spin d5- and d3-complexes often behave as nearly ideal spin-only systems. In these cases, $\mu_{\text {eff }}$ obtained by assuming the Curie formula is correct and plugging in the temperature, 300 K , gives good to excellent agreement with experiment. (Whby?)

Spin-Only Magnetism

$$
\begin{gathered}
\chi_{m}=\frac{C}{T}=\frac{N_{\mathrm{A}}}{3 k_{B} T} \mu_{e f f}^{2} ; \quad \text { and } \quad \mu_{e f f}=2 \sqrt{S(S+1)} \mu_{B}=\sqrt{n(n+2)} \mu_{B} \\
\text { (assumes } \left.g_{e}=2\right) \quad n=\text { \# of unpaired electrons }
\end{gathered}
$$

n	S	$\mu_{\text {eff }}$
1	$1 / 2$	1.73
2	1	2.83
3	$3 / 2$	3.87
4	2	4.90
5	$5 / 2$	5.92
6	3	6.93
7	$7 / 2$	7.94

Note:
The high-T slope of a χ^{-1} vs. $1 / T$ plot is a more reliable measure of $\mu_{\text {eff }}$ than the direct use of the Curie formula from a single measurement at a fixed temperature.

18

18

Table $5.8 \mathrm{~m}_{\text {eff }}$ data $\left(/ \mu_{\mathrm{B}}\right)$ at $c a .300 \mathrm{~K}$ for a selection of trigonal

bipyramidal complexes.
$\mathrm{S}=0 \quad\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]^{3-}, t-\mathrm{Ni}\left(\mathrm{PMe}_{3}\right)_{3}(\mathrm{CN})_{2} 0 \quad\left(\right.$ closed-shell $\left.d^{8}\right)$ $\left[\mathrm{Mo}(\mathrm{NO})(\mathrm{SPh})_{4}\right]^{-\quad 0} 0$ (closed-shcll $\left.d^{4}\right)$
$\mathrm{S}=1 / 2 t-\mathrm{Ti}\left(\mathrm{NMe}_{3}\right)_{2} \mathrm{Cl}_{3} \quad 1.69\left(d^{1}\right) \quad\left[\mathrm{VCl}_{5}\right]^{-} \quad 1.70\left(d^{1}\right)$
$t_{t-\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{Br}_{2}} \quad 2.10\left(d^{7}\right) \quad\left[\mathrm{CuCl}_{5}\right]^{3-} 1.89\left(d^{9}\right)$
$\mathrm{S}=1 \quad t-\mathrm{V}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{3} \quad 2.61\left(d^{2}\right) \quad t-\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{3} \quad 3.05\left(d^{6}\right)$
$\mathrm{S}=3 .\left[{\left.\mathrm{Ni}\left(\mathrm{Me}_{6} \mathrm{tren}\right) \mathrm{Cl}\right]^{+}}^{3.42\left(d^{8}\right)} \quad[\mathrm{Fe}(\mathrm{QP}) \mathrm{Cl}]^{+} \quad 3.10\left(d^{6}\right)\right.$
$\mathrm{S}=3 / 2 \quad t-\mathrm{Cr}\left(\mathrm{NMe}_{3}\right)_{2} \mathrm{Cl}_{3} \quad 3.88\left(d^{3}\right) \quad t-\mathrm{Fe}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}_{3} \quad 4.22\left(d^{5}\right)$
$\left[\mathrm{Co}\left(\mathrm{Me}_{6} \text { tren }\right) \mathrm{Cl}\right]^{+} 4.45\left(d^{7}\right) \quad\left[\mathrm{Co}(\mathrm{Opy})_{5}\right]^{2+} \quad 4.56\left(d^{7}\right)$
$\mathrm{S}=2 \quad\left[\mathrm{Cr}\left(\mathrm{Me}_{6} \text { tren }\right) \mathrm{Cl}\right]^{+} 4.85\left(d^{4}\right) \quad t-\mathrm{Mn}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{I}_{3} \quad 4.80\left(d^{4}\right)$
$\left[\mathrm{Fe}\left(\mathrm{Me}_{6} \text { tren) Br] }\right]^{+} 5.34\left(d^{6}\right)\right.$
$\mathrm{s}=5 / 2\left[\mathrm{Mn}^{\left(\mathrm{Me}_{6} \mathrm{tren}\right)} \mathrm{I}\right]^{+} 5.95\left(d^{5}\right)$
Me_{f} tren $=$ tris-(2-dimethylaminomethyl)amine, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NM} e_{2}\right)_{3}$
$\mathrm{QP}=$ tris-(2-diphenylphosphinophenyl)phosphine, $\mathrm{P}\left(0-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PP}_{2}\right)_{3}$
Spin states are determined by varying ligand field strengths in axial and equatorial ligands - see if you can discern trends.

Other coordination geometries: d^{n} Trigonal Bipyramidal complexes

$$
\begin{aligned}
& e^{\prime} \overline{x^{2}-y^{2}} \quad \overline{x y} \\
& e^{\prime \prime} \frac{x_{20}}{y z}
\end{aligned}
$$

Non-ideal Paramagnets: Curie-Weiss Law: $\chi=\frac{C}{T-\theta}$
$\theta<0$; paramagnetic behavior well above

Curie Law: $\chi=\frac{C}{T} ; \quad \chi^{-1}=\left(\frac{1}{C}\right) T$

Paramagnet Saturation: $\mu_{B} H>k_{B} T$
Orchard, p. 49 \& section 3.10

Non-ideal Paramagnets; Molecular Systems

22

Paramagnet Saturation: $\mu_{B} H>k_{B} T$
Orchard, section 3.10

Scaled saturation curves

24

Saturation Measurements to identify Spin States

The Brillouin functions have a characteristic shape for each J (or S for spin-only cases).
When magnetic ion concentrations or g-values are not known, the saturation measurements can yield J (or S) for near-ideal CurieLaw systems.
Saturation measurements are only useful for getting the low-T moment and only if the system if nearly ideal (i.e., molecular, noninteracting, moments)

Origins of Curie Law Deviations

- The simplest deviation: $g \neq g_{e}$. This doesn't alter the temperature dependence, but it does alter the computed value of S. The correct value of g to use is: $g^{2}=1 / 3\left(g_{x}{ }^{2}+g_{y}{ }^{2}+g_{z}{ }^{2}\right)$
- Temperature-independent (Van Vleck) paramagnetism (TIP). To more carefully discuss the origin of this kind of case, we'll need to use the Generalized Treatment of Susceptibility - see below!
- Another kind of T-independent paramagnetism arises from the conduction electrons in metals (Pauli paramagnetism).
- Zero Field Splitting and first-order orbital effects.
- Temperature variations due to coupling within a

Origins of Curie Law Deviations

- The Weiss constant, θ, incorporates the effects of intermolecular/interionic magnetic coupling above the ordering temperatures of ferro-, antiferro-, and ferrimagnets.
- There are several sources of nonCurie Law behavior that have an intramolecular origin.

Magnetism of Ln³+ Complexes

28

29
$E_{i}{ }^{(1)}$ and $E_{i}{ }^{(2)}$ are obtained from perturbation theory.

Generalized Treatment of

 Susceptibility (Van Vleck)If a material is not magnetically ordered, it will have no permanent magnetization. Therefore, $\mathrm{M}_{\mathrm{H}=0}=0$.
$M_{H=0}=\frac{N \sum_{i} E_{i}^{(1)} e^{-E_{i}^{(0)} / k_{B} T}}{\sum_{i} e^{-E_{i}^{(0)} / k_{B} T}}=0 ; \quad \therefore$ numerator $=0$
$E_{i}^{(0)} \xrightarrow{H} E_{i}$
Using this and expanding equation (1) to terms linear in H

$$
\frac{N \sum_{i}\left(\frac{\left(E_{i}^{(1)}\right)^{2}}{k_{B} T}-2 E_{i}^{(2)}\right) e^{-E_{i}^{(0)} / k_{B} T}}{\sum^{-E_{i}^{(0)} / k_{B} T}}
$$

$$
\begin{equation*}
\chi=\frac{N \sum_{i}\left(\frac{\left(E_{i}^{(1)}\right)^{2}}{k_{B} T}-2 E_{i}^{(2)}\right) e^{-E_{i}^{(0)} / k_{B} T}}{\sum_{i} e^{-E_{i}^{(0)} / k_{B} T}} \tag{2}
\end{equation*}
$$

Curie's Law from the Van Vleck Formula

The Van Vleck formalism can be used to derive Curie's Law; just retain the leading term in the numerator of eqn. (2):

Now, $E_{i}=E_{i}^{(0)}+E_{i}^{(1) H}$, where $E_{i}^{(1)}=g M_{\mathrm{s}} \mu_{\mathrm{B}}$
$\sum_{s}^{s}(1)=2 S+1$
$\sum_{-s^{x}=\frac{1}{s} s(S+1)(2 S+1)}$
$\chi=\frac{N \sum_{i}\left(\frac{\left(E_{i}^{(1)}\right)^{2}}{k_{B} T}\right) e^{-E_{i}^{(0)} / k_{B} T}}{\sum_{i} e^{-E_{i}^{(0)} / k_{B} T}}=\frac{N g^{2} \mu_{B}^{2} \sum_{i}\left(\sum_{M_{S}=-S}^{S} \frac{\left(M_{S}\right)^{2}}{k_{B} T}\right) e^{-E_{i}^{(0)} / k_{B} T}}{\sum_{i}\left(\sum_{M_{S}=-S}^{S}(1)\right) e^{-E_{i}^{(0)} / k_{B} T}}=\frac{N g^{2} \mu_{B}^{2} S(S+1)}{3 k_{B} T}$

Temperature Independent (Van Vleck) Paramagnetism (TIP)

- TIP is significant when the ground state is diamagnetic ($E_{i}(0)=0$), but there are many paramagnetic excited states with energies substantially greater than $k_{\mathrm{B}} T\left(E_{n}{ }^{(0)}\right.$ $-E_{0}(0) \gg k_{B} T$), but still not too high in energy.
- Only the second-order Zeeman mixing of excited states into the ground state (by the field) makes an appreciable contribution. Use of eqn. (2) shows the T independence:

34

Empirical Corrections

Curie-Weiss plus T-independent corrections: $\chi=\chi_{0}+\frac{C}{T-\theta}$

- In practice, a fit of the χ data including a T independent term, χ_{0}, is often included to account for diamagnetism and TIP empirically ($\chi_{0}=\chi_{\text {dia }}+$ $\chi_{\text {TIP }}$).
WARNING: empirical corrections like this can be dangerous when used indiscriminately! The magnitude of the correction has to be sensible (and small!).
Furthermore, since neither $\chi_{\text {dia }}$ nor $\chi_{\text {TIP }}$ is dependent on field, the H -dependence of the data should be checked!

ZFS: Effect on Susceptibility

$E_{i}=E_{i}^{(0)}+E_{i}^{(1)} H+E_{i}^{(2)} H^{2}+\cdots$
Bearing in mind the definitions of the terms that go into Van Vleck's formula ($E_{i}^{(2)}=0$):
$E_{0}{ }^{(0)}=0 ; E_{0}{ }^{(1)}=0$
$E_{ \pm 1}(0)=D$
$\mathcal{H}_{\text {eff }}=\mu_{B} \mathbf{H} \cdot \mathbf{g} \cdot \hat{\mathbf{S}}+D\left(\hat{S}_{z}^{2}-\frac{S(S+1)}{3}\right)$
$E_{ \pm 1}{ }^{(1)}= \pm g M_{\mathrm{S}} \mu_{\mathrm{B}}$
$\chi=\frac{N \sum_{i} \frac{\left(E_{i}^{(1)}\right)^{2}}{k_{B} T} e^{-E_{i}^{(0)} / k_{B} T}}{\sum_{i} e^{\left.-E_{i}^{(0)}\right) k_{B} T}}=N \frac{0+\frac{\left(g \mu_{B}\right)^{2}}{k_{B} T} e^{-D / k_{B} T}+\frac{\left(-g \mu_{B}\right)^{2}}{k_{B} T} e^{-D / k_{B} T}}{1+2 e^{-D / k_{B} T}}=N \frac{8 \mu_{B}{ }^{2}}{k_{B} T} \frac{e^{-D / k_{B} T}}{\left(1+2 e^{-D / k_{B} T}\right)}$
CAUTION: $e^{-\left(E_{i}^{(1)} H+E_{i}^{(2)} H^{2}+\ldots\right) / k_{B} T}=1-\frac{E_{i}^{(1)} H}{k_{B} T}$ actually only applies when $k_{B} T \gg E_{i}^{(1)} H 37$
37

Cr ${ }^{3+}$ ZFS: S = 3/2
$E_{i}=E_{i}^{(0)}+E_{i}^{(1)} H+E_{i}^{(2)} H^{2}+\cdots$
Bearing in mind the definitions of the terms that go into Van
Vleck's formula ($E_{i}^{(2)}=0$)
$E_{ \pm 1 / 2}^{(0)}=0 ; E_{ \pm 1 / 2}^{(1)}= \pm 1 / 2 g M_{s} \mu_{\mathrm{B}}$
$E_{ \pm 3 / 2}^{(0)}=2 D$
$E_{ \pm 3 / 2}^{(1)}= \pm 3 / 2 g M_{\mathrm{S}} \mu_{\mathrm{B}}$
$\chi=\frac{N \sum_{i}\left(E_{i}^{(1)}\right)^{2} e^{-E_{i}^{(0)} / k_{B} T}}{k_{B} T \sum^{-E_{i}^{(0)} / k_{B} T}}$
$\chi=N \frac{\left(\frac{1}{2} g \mu_{B}\right)^{2}+\left(-\frac{1}{2} g \mu_{B}\right)^{2}+\left[\left(\frac{3}{2} g \mu_{B}\right)^{2}+\left(-\frac{3}{2} g \mu_{B}\right)^{2}\right] e^{-2 D / k_{B} T}}{k_{B} T\left(2+2 e^{-2 D / k_{B} T}\right)}=N \frac{\mu_{B}^{2}}{k_{B} T} \frac{1+9 e^{-2 D / k_{B} T}}{{ }_{39}} \frac{\left(1+e^{-2 D / k_{B} T}\right)}{}$

ZFS: Effect on Susceptibility

38

38

$$
\begin{aligned}
& M_{M_{S}=-1 / 2}^{\rightarrow} \\
& \chi=N \frac{\mu_{B}{ }^{2}}{k_{B} T} \frac{1+9 e^{-2 D / k_{B} T}}{\left(1+e^{-2 D / k_{B} T}\right)}
\end{aligned}
$$

ZFS: S = 3/2

40

Some Room-temperature Effects

Table $5.20 \mathrm{~m}_{\text {eff }}$ values $\left(/ \mu_{\mathrm{B}}\right)$ at ca. 300 K for some tetrahedral
complexese of $\mathrm{Co}(I I) d^{7}-$ ground state ${ }^{4} \mathrm{~A}_{2}()^{4}\left(\mathrm{t}_{2}\right)^{3}-$ compared
aith

The spin-only value of $m_{\text {erf }}$ is $3.88 \mu_{\mathrm{B}}$.
$m_{\text {eff }}$ varies considerably with counter-cation

- In tetrahedral complexes with some tetragonal distortion (due to an asymmetric environment) ZFS can significant affect the susceptibility.
- For $\mathrm{Co}(\mathrm{II}), \zeta$ is significant (ca. $530 \mathrm{~cm}-$ ${ }^{1}$) and Δ_{t} isn't very large; mixing of the excited states $\sim \zeta^{2 / \Delta_{\mathrm{t}}}$, so anisotropy gives relatively large ZFS

First-Order Spin-Orbit Coupling in T-states, Till example; symmetry aspects

No JTDistortion assumed

$$
\chi\left(C_{\alpha}\right)=\frac{\sin (J+1 / 2) \alpha}{\sin \alpha / 2}
$$

43
$T_{2} \otimes \Gamma_{1 / 2}=\Gamma_{7} \oplus \Gamma_{8}$

First-Order Spin-Orbit Coupling in Tstates, Till example; set up

No JT-
Distortion $\quad \Gamma_{7} \quad$ For the $\left(t_{2 g}\right)^{1}$ configuration, there are 6 spin-orbitals: Distortion

To evaluate the matrix elements involving
these basis functions, we need:
$\lambda \mathbf{L} \cdot \mathbf{S} \Psi_{1}=-\lambda / \sqrt{2} \Psi_{2}+\left|d_{x^{2}-y^{2}} \alpha\right\rangle$
The spin-orbit perturbation is evaluated
$\lambda \mathbf{L} \cdot \mathbf{S} \Psi_{2}=\lambda\left[|-2 \alpha\rangle+\frac{1}{2} \Psi_{2}\right]$ in the basis of these six functions
$\Psi_{1}\left|d_{x y} \alpha\right\rangle \frac{1}{\sqrt{2}}[|2 \alpha\rangle-|-2 \alpha\rangle]$
$\Psi_{2} \quad|-1 \beta\rangle$
$\Psi_{3}\left|d_{x y} \beta\right\rangle \frac{1}{\sqrt{2}}[|2 \beta\rangle-|-2 \beta\rangle]$
$\begin{array}{ll}\Psi_{4} & \mid 1 \alpha \\ \Psi_{5} & |1 \beta\rangle\end{array}$
$\begin{array}{lr}\Psi_{5} & |1 \beta\rangle \\ \Psi_{6} & |-1 \alpha\rangle\end{array}$
(
$\lambda \mathbf{L} \cdot S \Psi_{3}=\lambda / \sqrt{2} \Psi_{4}+\left|d_{x^{-}-\nu^{\alpha}}{ }^{\alpha}\right\rangle$
$\lambda \mathbf{L} \cdot \mathbf{S} \Psi_{4}=\lambda\left[|2 \beta\rangle+\frac{1}{2} \Psi_{4}\right]$
$\begin{array}{ll}\lambda \mathbf{L} \cdot \mathbf{S} \Psi_{5}= & -\lambda / 2 \Psi_{5} \\ \lambda \mathbf{L} \cdot \mathbf{S} \Psi_{6}= & -\lambda / 2 \Psi_{6}\end{array}$

First-Order Spin-Orbit Coupling in T-

 states, Till example; secular equation1st-Order S-O Coupling in T-states, Till example; solutions, magnetic moments

Eigenvalues and eigenfunctions, magnetic moments

$E=+\lambda$	$\Phi_{1}=\frac{1}{\sqrt{3}}\left[\Psi_{1}-\sqrt{2} \Psi_{2}\right]$	$-\mu_{B}$
2-fold degenerate	$\Phi_{2}=\frac{1}{\sqrt{3}}\left[\Psi_{3}+\sqrt{2} \Psi_{4}\right]$	μ_{B}
	$\Phi_{3}=\frac{1}{\sqrt{3}}\left[\sqrt{2} \Psi_{1}+\Psi_{2}\right]$	0
$E=-\lambda / 2$	$\Phi_{4}=\frac{1}{\sqrt{3}}\left[\sqrt{2} \Psi_{3}-\Psi_{4}\right]$	0
4-fold degenerate	$\Phi_{5}=\Psi_{5}=\|1 \beta\rangle$	0
	$\Phi_{6}=\Psi_{6}=\|-1 \alpha\rangle$	0

Example calculations of Magnetic Moments: $M_{z}=\mu_{B}\left(L_{z}+2 S_{z}\right)$
$\left\langle\Phi_{5}\right| M_{z}\left|\Phi_{5}\right\rangle=\mu_{B}\langle 1 \beta| L_{z}+2 S_{z}|1 \beta\rangle=\mu_{B}\left[1+2 \cdot \frac{-1}{2}\right]=0$
$\left\langle\Phi_{1}\right| M_{z}\left|\Phi_{1}\right\rangle=2 \mu_{B}\left\langle\Phi_{1}\right| L_{z}+2 S_{z}\left|\Phi_{1}\right\rangle=\frac{2 \mu_{B}}{3}\left\langle\Psi_{1}-\sqrt{2} \Psi_{2}\right| L_{z}+2 S_{z}\left|\Psi_{1}-\sqrt{2} \Psi_{2}\right\rangle$
$=\frac{\mu_{B}}{3}\left\langle\Psi_{1}\right| L_{z}+2 S_{z}\left|\Psi_{1}\right\rangle+\frac{2 \mu_{B}}{3}\left\langle\Psi_{2}\right| L_{z}+2 S_{z}\left|\Psi_{2}\right\rangle=$
$=\frac{\mu_{B}}{6}\langle 2 \alpha| L_{z}+2 S_{z}|2 \alpha\rangle+\frac{\mu_{B}}{6}\langle-2 \alpha| L_{z}+2 S_{z}|-2 \alpha\rangle+\frac{2 \mu_{B}}{3}\langle-1 \beta| L_{z}+2 S_{z}|-1 \beta\rangle=$ $\frac{\mu_{B}}{6}\left[2+2 \cdot \frac{1}{2}-2+2 \cdot \frac{1}{2}\right]+\frac{2 \mu_{B}}{3}\left[-1+2 \cdot \frac{-1}{2}\right]=\frac{2 \mu_{B}}{6}+\frac{2 \mu_{B}}{3}(-2) 46-\mu_{B}$

45

1st-Order S-O Coupling in T-states, Till example; the big picture
Eigenvalues and eigenfunctions, magnetic moments

46
Ti^{3+} : S.O. coupling
$E_{i}=E_{i}^{(0)}+E_{i}^{(1)} H+E_{i}^{(2)} H^{2}+\cdots$
Bearing in mind the definitions of the terms that go into Van Vleck's formula (assume $E_{i}(2)=0$) :
(0) (1)
$E_{-\lambda / 2}=0 ; E_{-\lambda / 2}=0$
$\chi=\frac{N \sum_{i}\left(E_{i}^{(1)}\right)^{2} e^{-E_{i}^{(0)} / k_{B} T}}{k_{B} T \sum_{i} e^{-E_{i}^{(0)} / k_{B} T}}$
$E_{\lambda}{ }^{(0)}=3 \lambda / 2 ; E_{\lambda}{ }^{(1)}= \pm \mu_{B}$

$$
\chi=N \frac{4(0)^{2}+\left[\left(\mu_{B}\right)^{2}+\left(-\mu_{B}\right)^{2}\right] e^{-3 \lambda / 2 k_{B} T}}{k_{B} T\left(4+2 e^{-3 \lambda / 2 k_{B} T}\right)}=N \frac{\mu_{B}{ }^{2}}{k_{B} T} \frac{e^{-3 \lambda / 2 k_{B} T}}{\left(2+e^{-3 \lambda / 2 k_{B} T}\right)}
$$

T-terms: Orbital Effects (Max.)

(a)

49

Interactions between Magnetic Ions

- We've been mostly concerned with the way magnetic moments can be altered by the electronic structure within the ion.
- We begin to consider interactions between ions by considering dinuclear systems and the phenomenological Heisenberg Dirac-Van Vleck (HDVV) Hamiltonian for coupling:

$$
\mathcal{H}_{\mathrm{HDVV}}=-2 J \hat{\mathbf{S}}_{A} \bullet \hat{\mathbf{S}}_{B} \quad \begin{aligned}
& J>0 \text { ferromagnetic coupling } \\
& J<0 \text { antiferromagnetic coupling }
\end{aligned}
$$

- While this reminds us of a form expected for dipoledipole coupling, remember that a phenomenological Hamiltonian is just another name for an effective Hamiltonian - we'll worry about where J comes from

(c)

T/| $\lambda \mid$

T-terms: Orbital Effects (Max.)

B. N. Figgis, M. A. Hitchman, "Ligand Field Theory and its Applications", Chapter 9.
$1.0<A<1.5$
(strong field limit) (weak field limit)

Energy Levels from $\mathcal{H}_{\mathrm{HDVV}}$

- Using manipulations similar to those used to treat spinorbit coupling, we can rewrite $\mathcal{H}_{\text {HDVv }}$:

$$
\begin{gathered}
\mathcal{H}_{\mathrm{HDVV}}=-2 \hat{\mathbf{S}}_{A} \cdot \hat{\mathbf{S}}_{B} \\
\hat{\mathbf{S}}_{T}=\hat{\mathbf{S}}_{A}+\hat{\mathbf{S}}_{B} ; \hat{S}_{T}^{2}=\hat{\mathbf{S}}_{T} \cdot \hat{\mathbf{S}}_{T}=\hat{S}_{A}^{2}+\hat{S}_{B}^{2}+2 \hat{\mathbf{S}}_{A} \cdot \hat{\mathbf{S}}_{B} \\
2 \mathbf{S}_{A} \cdot \hat{\mathbf{S}}_{B}=\hat{S}_{T}^{2}-\hat{S}_{A}^{2}-\hat{S}_{B}^{2} \quad \text { These are operators! }
\end{gathered}
$$

- The eigenvalues (energies) of $\mathcal{H}_{\mathrm{HDVV}}$ are then:

$$
E_{n}=-J\left[S_{T}\left(S_{T}+1\right)-S_{A}\left(S_{A}+1\right)-S_{B}\left(S_{B}+1\right)\right] \quad \begin{aligned}
& \text { These are } \\
& \text { scalars! }
\end{aligned}
$$

- In general, the coupling strength $(\sim J)$ is much smaller than the splittings between the spin-states of the individual ions - which are in turn much greater than $k_{\mathrm{B}} T . \therefore$ We can view S_{A} and S_{B} as constants and absorb the two last terms into the zero of energy:
$E_{n}=-J S_{T}\left(S_{T}+1\right)$; energy spacing: $E_{n}\left(S_{T}\right)-E_{n}\left(S_{T}-\overline{\mathrm{F}}\right)=-2 J S_{T}$

Example: Cr^{3+} coupled to Ni^{2+}

- Possible spin states of the coupled system are determined as a vector sum (formally like we saw for L-S coupling and S.O. coupling)
- Van Vleck expression can be used to calculate expected susceptibility.

$$
\begin{aligned}
& S_{\mathrm{CC}^{3+}}=\frac{3}{2} ; S_{\mathrm{N}^{2+}}=1 \\
& \mathbf{S}_{T}=\mathbf{S}_{\mathrm{Cr}^{3+}}+\mathbf{S}_{\mathrm{Ni}^{2+}}
\end{aligned}
$$

possible values of $S_{T}: \frac{5}{2}, \frac{3}{2}, \frac{1}{2}$

$$
E_{n}=-J S_{T}\left(S_{T}+1\right)
$$

$$
E_{5 / 2}=-J \frac{5}{2}\left(\frac{5}{2}+1\right)=\frac{-35 J}{4}
$$

$$
E_{3 / 2}=\frac{-15 J}{4} ; E_{1 / 2}=\frac{-3 J}{4}
$$

53

A General Formula for Two Coupled Ions

Using Van Vleck's formula and the previous example as guidance, it isn't hard to write a general formula for any two coupled centers:
$\chi_{m}=\frac{N g^{2} \mu_{B}^{2} \sum_{n} a_{n} e^{-E_{s}^{(0)} / k_{B} T}}{k_{B} T \sum_{n} b_{n} e^{-E_{n}^{(0)} / k_{B} T}} \approx \frac{3}{8} \frac{g^{2} \sum_{n} a_{n} e^{-E_{E}^{(0)} / k_{B} T}}{T \sum_{n} b_{n} b^{-E_{n}^{(0)} / k_{B} T}}$
Where we've used the fact that $\frac{N \mu_{B}^{2}}{k_{B}} \simeq 0.375=\frac{3}{8}$. Also, $a_{n}=\frac{1}{3} S_{T}\left(S_{T}+1\right)\left(2 S_{T}+1\right) ; \quad b_{n}=\left(2 S_{T}+1\right)$ Note that the sum over n refers to all the values that S_{T} takes, from $S_{A}+S_{B}$ down to $\left|S_{A}-S_{B}\right|$
We'll express the coupling constant J in kelvin: $J(K)=J / k_{B}$

55

$$
E_{i}=E_{i}^{(0)}+E_{i}^{(1)} H+E_{i}^{(2)} H^{2}+\cdots
$$

Bearing in mind the definitions of the terms that go into Van Vleck's formula $\left(E_{i}^{(2)}=0\right)$:
$E_{5 / 2}^{(0)}=0 ; \quad E_{5 / 2}^{(1)}= \pm 1 / 2 \mathrm{~g} \mu_{\mathrm{B}}, \pm 3 / 2 \mathrm{~g} \mu_{\mathrm{B},} \pm 5 / 2 \mathrm{~g} \mu_{\mathrm{B}}$
$E_{3 / 2}^{(0)}=5 \mathrm{~J} ; \quad E_{3 / 2}^{(1)}= \pm 1 / 2 \mathrm{~g} \mu_{\mathrm{B}}, \pm 3 / 2 \mathrm{~g} \mu_{\mathrm{B}}$
$E_{1 / 2}^{(0)}=8 J ; \quad E_{1 / 2}^{(1)}= \pm 1 / 2 \mathrm{~g} \mu_{\mathrm{B}}$
$\chi=\frac{N \sum_{i}\left(E_{i}^{(1)}\right)^{2} e^{-E_{i}^{(0)} / k_{B} T}}{k_{B} T \sum e^{-E_{i}^{(0)} / k_{B} T}}$
$\chi=N \frac{2\left(\frac{1}{2} g \mu_{B}\right)^{2}+2\left(\frac{3}{2} g \mu_{B}\right)^{2}+2\left(\frac{5}{2} g \mu_{B}\right)^{2}+\left[2\left(\frac{1}{2} g \mu_{B}\right)^{2}+2\left(\frac{3}{2} g \mu_{B}\right)^{2}\right] e^{-5 J / k_{B} T}+\left[2\left(\frac{1}{2} g \mu_{B}\right)^{2}\right] e^{-8 J / k_{B} T}{ }^{H}}{k_{B} T\left(6+4 e^{-5 J / k_{B} T}+2 e^{-5 J / k_{B} T}\right)}$

$$
\chi=N \frac{\mu_{B}^{2}}{k_{B} T} g^{2} \frac{\frac{35}{2}+5 e^{-5 J / k_{B} T}+\frac{1}{2} e^{-8 J / k_{B} T}}{\left(6+4 e^{-5 J / k_{B} T}+2 e^{-5 J / k_{B} T}\right)}
$$

54

$\mathrm{Ni}_{2}($ abpy $\left.)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$

$\left\{\left[\mathrm{Ni}_{2}(\right.\right.$ abpy $\left.)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right\}$

$$
\chi_{m}=\frac{3}{8} \frac{g^{2} \sum_{n} a_{n} e^{-E_{n}^{(0)} / k_{B} T}}{T \sum_{n} b_{n} e^{-E_{n}^{(0)} / k_{B} T}}=\frac{3}{8} \frac{g^{2}\left(0+2 e^{2 J / T}+10 e^{8 J / T}\right)}{T\left(1+3 e^{2 J / T}+5 e^{8 J / T}\right)}
$$

Fitted line has added term (C/T) with C = $0.08, \mathrm{~J}=-11 \mathrm{~K}, \mathrm{~g}=2.03$

Dipolar Interaction: Weak!

- The energy of the magnetic dipole-dipole interaction falls off as the cube of the distance between dipoles and is too weak to explain magnetic coupling.

$E_{\text {dipolar }} \approx \frac{\left(g \mu_{B}\right)^{2}}{r^{3}} \approx\left(\frac{e \hbar}{m c}\right)^{2}\left(\frac{1}{r}\right)^{3}=\left(\frac{e \hbar}{m c}\right)^{2}\left(\frac{m e^{2}}{\hbar^{2}}\right)^{2} \frac{1}{a_{0}}\left(\frac{a_{0}}{r}\right)^{3} \approx\left(\frac{e \hbar}{m c}\right)^{2}\left(\frac{m e}{\hbar^{2}}\right)^{2}\left(\frac{a_{0}}{r}\right)^{3}\left(\frac{e^{2}}{a_{0}}\right)$ $=\left(\frac{e^{2}}{\hbar c}\right)^{2}\left(\frac{a_{0}}{r}\right)^{3}(27.2 \mathrm{eV})=\alpha^{2}\left(\frac{a_{0}}{r}\right)^{3}(27.2 \mathrm{eV}) \simeq\left(\frac{a_{0}}{r}\right)^{3}\left(\frac{27.2}{137^{2}} \mathrm{eV}\right) 57$

57

$180^{\circ} \pi$ orbital superexchange

Compare $\left[\mathrm{Ru}_{2}(\mu-\mathrm{O}) \mathrm{Cl}_{10}\right]^{4-}$

$$
\begin{gathered}
E_{T}-E_{S}=-2 J=J_{12}-1 / 2\left(J_{a a}+J_{a b}\right)+\frac{\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}}{2 K_{12}} \\
E_{T}-E_{S}=-2 J=-2 K_{a b}+\frac{\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}}{J_{a a}-J_{a b}} \\
\left(E_{T} \equiv E_{S=1} ; E_{T} \equiv E_{S=0}\right)_{59}
\end{gathered}
$$

What controls coupling?

- How does the sign and magnitude of J change with angle (θ)?
- delocalized and localized
 picture (Hay, Thiebault, and Hoffmann, J. Am. Chem. Soc. 1975, 97, 4884).
$E_{T}-E_{S} \equiv-2 J=J_{12}-1 / 2\left(J_{a a}+J_{a b}\right)+\frac{\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2}}{2 K_{12}}=-2 K_{a b}+\frac{\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2}}{J_{a a}-J_{a b}}$ $\left(E_{T} \equiv E_{S=1} ; E_{S} \equiv E_{S=0}\right) \quad \phi_{1}, \phi_{2}, \varepsilon_{1}, \varepsilon_{2}:$ delocalized orbitals \& energies ; $\phi_{a}=\frac{1}{\sqrt{2}}\left(\phi_{1}+\phi_{2}\right), \phi_{b}=\frac{1}{\sqrt{2}}\left(\phi_{1}-\phi_{2}\right):$ localized orbitals

58

Orthogonal Orbitals or Not
$\left[\left(\mathrm{L}_{4} \mathrm{Ni}\right)_{3} \mathrm{Cr}\right]^{3+}:\left(\mathrm{d}^{8}\right)_{3} \mathrm{~d}^{3}$
$\left[\left(\mathrm{L}_{4} \mathrm{Cu}\right)_{3} \mathrm{Mn}\right]^{3+}:\left(\mathrm{d}^{9}\right)_{3} \mathrm{~d}^{5}$

L, L' = Schiff base (imine) ligands

Pei, Journoux, \& Kahn, Inorg. Chem. 1989, 28, 100.

61

62

Careful Study of Structure Can Be Revealing

Ferromagnets		S	$\left(\mu / \mu_{\mathrm{B}}\right)$	$\mathrm{T}_{\mathrm{C}}(\mathrm{K})$
$\mathrm{Rb}_{2} \mathrm{CrCl}_{4}{ }^{*}$	Cr^{2+} $\left(\mathrm{d}^{4}-\mathrm{HS}\right)$	2	5.8	57
$\mathrm{~K}_{2} \mathrm{CuF}_{4}{ }^{*}$	Cu^{2+} $\left(\mathrm{d}^{4}-\mathrm{HS}\right)$	$1 / 2$	1.8	6
$\mathrm{La}_{0.7} \mathrm{Sr}_{0.3} \mathrm{MnO}_{3} \dagger$	$\mathrm{Mn}^{3+}\left(\mathrm{d}^{4} \mathrm{HS}\right)$, $\mathrm{Mn}^{4+}\left(\mathrm{d}^{3} \mathrm{HS}\right)$	$2 \&$ $3 / 2$	3.7	350
\dagger perovskite ; * $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type				

64

P A Cox, "The Electronic Structure and Chemistry of Solids" Oxford, 1987.

Spinels and Inverse Spinels

65

- The 'transfer' of an upspin electron would leave the ion from which the electron is transferred (the lefthand ion) in a higher energy state.
- e- transferred must have opposite spin to those of the 'receiving' ion. (Pauli principle.)
\therefore double-exchange gives ferromagnetic coubpling.

Double-Exchange in Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$

In reduced coordinates, T / T_{C} and M / M_{0}, the behavior of ferromagnets is fairly universal, as long as the dimensionality of the coupled spins is the same (i.e., the coupling between moments extends in 3-dimensions).

