
Electronic Structure and 
Spectroscopy of TM Complexes
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Books for this Topic
✿ Harris & Bertolucci, “Symmetry and Spectroscopy, 

An Introduction to Vibrational and Electronic 
Spectroscopy” 

✿ Cotton, “Chemical Applications of Group Theory” 
✿ Housecroft & Sharpe, “Inorganic Chemistry”, 3rd 

Edition, Chapter 21. 
✿ Solomon & Lever, “Inorganic Electronic Structure 

and Spectroscopy” see Volume 1, Chapter 3 - by 
Hitchman and Riley. 

✿ Cotton & Walton, “Multiple Bonds between Metal 
Atoms”, 2nd Edition, Chapter 10. [Last section.]

Required Reading: Acc. Chem. Res., 2000, 33, 483-90.
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Good Undergraduate 
Background Text

• Housecroft & Sharpe, 
“Inorganic Chemistry”, 4th 
Edition, Chapters 19 and 20. 

• We cover more, but this 
chapter fills in almost 
everything I haven’t done in 
detail. 

• Alternative: Shriver & 
Atkins, Chapter 19.
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Spectroscopy: The Big Picture
Core-level 
transitions

Valence 
transitions
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Electronic Energy Scales - The 
Hierarchical Approach 

• The largest energy level splittings in atoms and molecules due to 
principal quantum number changes (and concomitant differences 
in screening).  This underlies our familiar focus on valence vs. 
core-levels. 

• Energy level splittings between different l levels (e.g., between s, 
p, d… electrons) are often comparable to bonding effects – 
evident in both the concept of “hybrid orbitals” and in mixed 
orbital parentage of molecular orbitals. 

• In T.M. complexes, e–-e– repulsion differences are often 
comparable to M-L bonding energies.  A big part of ligand-field 
theory deals with the complications that arise from the 
competition between these energetic effects.
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Carbon: Atomic Energy Levels
 Experimental atomic 

energy levels (cm–1).

http://physics.nist.gov/PhysRefData/ASD/index.html

3P

1D

1S

5S

s2p2

sp3

10,163

e–-e–
repulsion
differences

28,906
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Cr(III): Electronic 
Energy Levels

https://physics.nist.gov/PhysRefData/ASD/levels_form.html

7

Background Topics

• MO theory of transition metals: 
Octahedral coordination,  

• σ-donors (all ligands)  
• π-donors (halides, amides, alkoxides, 

thiolates, …) 
• π-acceptors (CO, NO+, CN–, CNR)
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Bonding and Electronic Structure

• Molecular orbital picture for Lewis 
acid-base interaction 

• d-orbitals - acceptor orbitals on 
transition metals 

• MO picture for octahedral complexes 
• Low-spin vs. high-spin complexes; 

ligand-field splitting vs. pairing 
energy
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Metal-Ligand bonding

• Concepts of “hardness” and “softness” 
already discussed (qualitatively).  
(Pearson’s 1963 JACS paper introducing 
these concepts is posted in the web site 
“handouts” section.)  

• Intro to Ligand fields - an MO scheme 
for a “typical” octahedral transition 
metal complex.
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Contrast 
between 
octahedral & 
tetrahedral 
LF splitting
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Background Topics - 
increasing ∆o

• Spectrochemical Series:  
 NO+ > CR3

– > CO ≥ PF3 ≥ CN– > NO2 > NH3 > 
H2O > OH– > F– > S2 – > Cl– > Br– > I–  

 the series represents the confluence of several 
trends in electronegativity (greater), σ-donation 
(weaker), and decreasing/increasing π-donation/
acceptance 

• Metal trends:  
 Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Cr3+ < V3+ 

< Co3+ < Mn4+ < Rh3+ < Pd4+ < Ir3+ < Re4+ < Pt4+  
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Hydrolysis constants of Metal ion 
complexes give acidic solutions

pKa’s for [M(H2O)6]n+ 

[Fe(H2O)6]3+ 2.46 
[Cr(H2O)6]3+ 3.89 
[Al(H2O)6]3+ 4.85 
[Fe(H2O)6]2+ 5.89 
[Cu(H2O)6]3+ 7.49 
[Ni(H2O)6]2+ 9.03
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Spectrochemical Series for Ligands 
applies to all geometries

• Tetrahedral complexes are 
almost never low-spin; rare 
exceptions occur at the 
highest end of the series.

M

4

n

M n µeff(µB)

Co 0 1.89

Co -1 3.18

Co +1 ~0

Fe 0 ~0

Mn +1 3.78

Mn 0 high-spin
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Examples of two trends

Energy scale discussion

Complex ∆o (10 Dq) Ox. State
[Co(H2O)6]2+ 9,000 Co(II)
[Co(H2O)6]3+ 18,000 Co(III)

[Co(NH3)6]2+ 12,000 Co(II)
[Co(NH3)6]3+ 22,870 Co(III)

[CoF6]3- 13,000 Co(III)
[Co(CN)6]3- 32,000 Co(III)
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More 
Examples
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Background Topics - more on 
bonding

• Other geometries:  
 e.g., tetrahedral, trigonal bipyramid, square planar 
• Simple VB theory:  
 In spectroscopy, the Pauling-style VB approach is 

nearly useless, but it provides a handy way to 
simplify bonding in parts of the molecule where 
details of electronic structure are not important to 
the task at hand (example: where is the d2sp3 
hybridization scheme a useful concept for 
octahedral complexes?) 
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Background Topics - the role 
of e––e– repulsion

Illustrative Questions: 
• What is the (specific) 

origin of the energy 
difference between the 
3F and 1G atomic 
states? 

• In the strong-field limit, 
what is the origin of 
the splittings between 
the 3A2g, 1Eg, and 1A1g 
ligand field states from 
the eg

2 configuration?
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Background Topics - the 
noncrossing rule

Illustrative Issues: 
• What is the strength of 

the mixing between the 
3F(3T1g) and 3P(3T1g) 
atomic states? 

• In the strong-field limit, 
exactly how much of 
the two 3F(3T1g) and 
3P(3T1g) states 
contribute to the two 
molecular 3T1g states?
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Physical Background - Symmetry Review
• In the handout, “Transitions Between Stationary States 

(Adapted from Harris and Bertolucci, p. 130)”, an expression 
for the probability that a system in its ground state, ψ0 can be 
stimulated by radiation into an excited state, ψ1, is derived: 

• This expression applies to an integral over all wavelengths of 
incident light (in the dipole approximation) and was the form used 
to evaluate whether an electron transition was symmetry allowed.

Ψ(r,t) = c0(t)Ψ0(r,t)+ c1(t)Ψ1(r,t)

d c1*c1( )
dt

∝ E0
2 µ01

x  2 + µ01
y  2 + µ01

z  2( )   assuming c0(0) = 1 and c1(0) = 0. 

E0
2  is proportional to the light intensity and

µ01
x,y,z=e ψ 1

* x
y
z

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
ψ 0 dτ∫  are the transition moment integrals.
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Allowedness

• In group theory, prescription for deciding whether a 
transition is dipole-allowed is straightforward: 
• If the ground and excited states respectively belong to the Γ0 and 

Γ1 representations of the point group of the molecule in question, 
then a transition is dipole-allowed if and only if 

• Spin doesn’t change: ∆S = 0.  For states where large spin-orbit 
mixing is possible (large ζ and/or small ∆E between mixed states), 
the rule is weakened.

Γ0 ⊗Γ1 contains 
Γ x  for x-polarized light
Γ y  for y-polarized light
Γ z  for z-polarized light

⎧

⎨
⎪

⎩
⎪
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Harmonic vs. Real Potentials
• Harmonic oscillators 

have equally spaced 
levels 

• Real oscillators 
exhibit anharmonicity

  

Ei (n) = (ni +
1
2
)hν i   

for the ith  vibrational mode

  

Ei (n) = ni +
1
2( )hν0 − ni +

1
2( )2

hν0( )2
4De   

Ei (n)
hc

= ni +
1
2( )ωe − ni +

1
2( )2

ωexe

Ei (n +1) − Ei (n) = hν0 − ni +
1
2( ) hν0( )2

2De

Solutions for the Morse Potential →

  
V (r) = De 1− e−a(r−re )( )2

   a = ke 2De

ν=0

ν=1
ν=2
ν=3
ν=4
ν=5
ν=6

De D0

Internuclear Separation (r)
re

23

Vibrational 
Progressions

Schematic 1Σ+ → 1Π electronic 
absorption spectrum of CO showing 
vibronic transitions to higher energy 
than the pure electronic 0-0 transition.

  ωe = 1516 cm−1      ωexe = 17.25 cm−1
Do these numbers 
    make sense? →

0 – 0
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Vibrational 
Progressions

δ → δ* (1A1g → 1A2u) z-polarized absorption 
spectra of [(C4H9)4N]2[Re2Cl8] at 293 K, 77 
K, and 5 K.

14,00015,00016,000

1/ λ (cm–1)
0 – 0

See prob. 5.56, H & B, pp. 413-4.
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LMCT and MLCT Transitions

Ligand-to-Metal Charge Transfer (LMCT) 
a) intramolecular e- transfer from ligand-based orbitals to 

metal-based orbitals     Mn+—L– → M(n–1)+—L 
b) ε values are 5,000-50,000 M–1cm–1  (very intense) 
c) since we are “oxidizing” the ligand and “reducing” the 

metal, LMCTs are favored with 
a) easily oxidized ligands (π-donors)  Low I. E. (I – < Br– < Cl– < F–) 
b) easily reduced metals (i.e. high oxidation states) 

Metal-to-Ligand Charge Transfer (MLCT) – less common 
a) intramolecular e– transfer from metal-based orbitals to 

ligand-based orbitals     M—L → M+—L– 

b) Intensities similar to LMCT
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Types of Transitions: d-d

a) intramolecular e– transfer within the d-orbital manifold 
b) Values for ε vary: up to 1,000 M–1 cm–1 (moderately 

intense) for spin-allowed transitions in non-
centrosymmetric molecules; ~10 M–1cm–1 for spin-allowed 
transitions in centrosymmetric molecules (weak); ~10–1 M–
1cm–1 for spin-forbidden transitions in centrosymmetric 
molecules (very weak). 

c) 1-e– transitions much more intense (2-e– transitions 
typically 10–2 times weaker) 

d) Shoulders and/or broad peaks expected where Jahn-Teller 
distortions apply.
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Basic d-d Spectra
All 6-coordinate

Why the shoulder?

Use energy ratios

ε

ε

ε

16,900
24,900
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O  E 8C3 
3C2  

(= C4
2)  6C4 6C2   

A1 1  1  1  1  1   x2 + y2 + z2 
A2 1  1  1  – 1  – 1    
E  2  – 1  2  0  0   (2z2 – x2 – y2, x2 – y2)  
T1 3  0  – 1  1  – 1  (Rx, Ry, Rz); (x, y, z )   
T2 3  0  – 1  – 1  1   (xy, xz, yz) 
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Atomic State splittings: All Operations 
Carter, p. 205

• + signs apply for a gerade atomic state 
and – signs apply for an ungerade 
atomic state, whether the point group 
under consideration has inversion 
symmetry or not. Examples: a 3P state 
derived from either p2 configuration (u × 
u) or a d2 configuration (g × g) give g 
states.  However, a 2D state derived from 
a p3 configuration (u × u × u) gives a u 
state, while a 2D state derived from a d3 
configuration (g × g × g) gives a g state. 

• The symbol J refers to the angular 
momentum quantum number of the state 
under consideration. In the Russell-
Saunders scheme, J can be replaced by L 
when considering a spatial wave 
function.

χ(E) = 2J +1

χ(Cα ) =
sin[(J +1 2)α ]
sin(α 2)

χ(i) = ±(2J +1)

χ(Sα ) = ±
sin[(J +1 2)(α + π )]
sin[(α + π ) 2]

χ(σ ) = ± sin[(J +1 2)π ]

See notes-11 from CHEM 673
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CrIII d-d spectra
All 6-coordinate

Use energy ratios

[Cr(H2O)6]
3+

[Cr(en)3]
3+

300 350 400 450 500 550 600 650 700

1742224570
21834

28490

17360
24510 = 1.410

21834
28490 = 1.305

http://wwwchem.uwimona.edu.jm:1104/
lab_manuals/CrTSexptnu/CrexptJ.html

λ (nm)

45.71

35.03

35.0

34.09

24.17

24.2
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CrIII d-d spectra
All 6-coordinate

Use energy ratios

[Cr(H2O)6]
3+

[Cr(en)3]
3+

300 350 400 450 500 550 600 650 700

1742224570
21834

28490

http://wwwchem.uwimona.edu.jm:1104/
lab_manuals/CrTSexptnu/CrexptJ.html

λ (nm)
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Nephelauxetic Series

• Nephelauxetic Ligand Series:   F– < H2O < NH3 < en < 
[ox]2– < [NCS]– < Cl– < [CN]– < Br– < I–  

• This series orders the extent to which ligands induce the 
nephelauxetic (cloud expanding) effect in coordination 
complexes in which they are bound.  Quantitatively, this is 
measured in the extent to which electron-electron 
repulsion is reduced in the metal coordination complex vs. 
the free metal ions; i.e., in the ratio (B0 – B)/B0 where B is 
the measured empirical Racah parameter and B0 is the 
free-ion value. 

• Metal trends: Mn2+ < Ni2+ ≈ Co2+ < Mo2+ < Re4+ < Fe3+ < 
Ir3+ < Co3+ < V3+ < Mn4+
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Polarized Spectra, 
Example

• Both D4h and D2d CuCl4
2– 

ions are present, but the 
distorted tetrahedral ions 
give ~20 times more 
intense absorption. 

• The [101] crystal axis is 
nearly parallel to the D2d 
ions’ S4 axes. 

• Can you assign the 
transitions? McDonald, R.G., Riley, M.J., Hitchman, M.A., 

Inorg. Chem., 1988, 27, 894. See also Solomon & 
Lever, “Inorg. Elec. Structure and Spec.” Vol. 1, 
Chapter 3 - by Hitchman and Riley, p. 234.

• Naem = [N-(2-ammonioethyl) 
morpholinium]CuCl4 

• Directions indicate the electric 
vector orientations.

θ = 146.2˚ NH+

O

+H3N

Naem
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D2d

  

D2d E 2S4 C2(S 4
2 ) 2C2

′ 2σ d

A1 1 1 1 1 1 x2 + y2 ,  z2

A2 1 1 1 –1 –1 Rz
B1 1 –1 1 1 –1 xy
B2 1 –1 1 –1 1 z x2 − y2

E 2 0 –2 0 0 (x,  y) (Rx , Ry ) (xz, yz)

 (for this coordinate system)
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Vibronic Coupling
• Because they have g—g character, the d-d 

transitions of complexes of the transition 
metals are “forbidden” (LaPorte 
forbidden). 

• Complexes with noncentrosymmetric 
coordination geometries (e.g., tetrahedral) 
have more intense d-d spectra. 

• Spectra in centrosymmetric (e.g., 
octahedral) complexes “acquire intensity” 
via vibronic coupling.
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Including the effects of coupling demands a 
modified wavefunction.  In the simplest 
approximation, ψelec. and ψvib. not separable. 

∴Consider the product, ψelec.ψvib., for 
examining selection rules:

ψ elec.
gndψ vib.

gnd d̂ψ elec.
ex ψ vib.

ex∫ dτ =
?

0

ψ vib.
gnd  generally belongs to totally symmetric rep. 

(otherwise, "hot bands" are involved). ∴  consider,

ψ elec.
gnd d̂ψ elec.

ex ψ vib.
ex∫ dτ =

?
0
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D4h CuCl4
2–

• T-dependence of band 
positions and 
intensities is different 
for bands centered at 
~16,500 cm–1 and 
14,000 cm–1 (at 290 K). 

• Explain!

290 K

10 K

60 K

100 K

200 K

Solomon & 
Lever, “Inorg. 
Elec. Structure 
and Spec.” Vol. 1, 
Chapter 3 - by 
Hitchman and 
Riley, p. 246.
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D4h

D4h E 2C4 C2(C 4
2 ) 2C2

′ 2C2
′′ i 2S4 σ h 2σ v 2σ d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2,  z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz
B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx ,Ry ) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x,  y)
Γtot 15 1 −1 −3 −1 −3 −1 5 3 1
Γvib 9 −1 1 −1 1 −3 −1 5 3 1
Γstretch 4 0 0 2 0 0 0 4 2 0

Γvib = A1g + B1g + B2g + A2u + B2u + 2Eu           Γstretch = A1g + B1g + Eu
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Source of broadening and shifting of 
absorption peaks

Solomon & 
Lever, “Inorg. 
Elec. Structure 
and Spec.” Vol. 1, 
Chapter 3 - by 
Hitchman and 
Riley, p. 222.
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Solomon & 
Lever, “Inorg. 
Elec. Structure 
and Spec.” Vol. 1, 
Chapter 3 - by 
Hitchman and 
Riley, p. 225.

Source of broadening and shifting of 
absorption peaks
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Narrow lines and hot bands in UCl6
2–

Solomon & 
Lever, “Inorg. 
Elec. Structure 
and Spec.” Vol. 1, 
Chapter 3 - by 
Hitchman and 
Riley, p. 239.

U(IV): 6p 
65f 2 6d 0

3H4 ground state
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Dichroism of [trans-CoCl2(en)2]+

Fig. 9.13 in Cotton

12,000 20,000 30,000 40,000
0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lo
g 
ε

z-polarization

xy-polarization
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Facts of the [trans-CoCl2(en)2]+ case.

_ Spectrum: Fig. 9.13 in Cotton (from S. 
Yamada and R. Tsuchida, Bull. Chem. Soc. 
Japan, 25, 127, 1952). 

_ The solution spectrum is virtually identical 
with [trans-CoCl2(NH3)4]+ ∴ Virtual D4h 
symmetry is a reasonable assumption. 

• Both Cotton and, following him, Harris and 
Bertolucci, have made an error in the 
analysis of this case which leads to some 
wrong/problematic predictions.
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Vibronic Coupling in [trans-CoCl2(en)2]+ 

_ Virtual D4h symmetry, d6, low-spin 

_ The CoIII ion is d6, low-spin, in 
approximate Oh symmetry, ground state 
configuration is (t2g)6, 1A1g state. 

_ Dipole allowed transitions?  Lowest 
energy singlets?  See Tanabe-Sugano 
diagram. 

_ Oh to D4h correlations? 

_ Vibrations of the [trans-CoCl2N4] grouping
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Vibrations of the trans-[CoCl2N4] group

_ On p. 293 of Cotton’s text, he gives 
2A1g, B1g, B2g, Eg, 2A2u, B1u, 3Eu

This should be 
2A1g, B1g, B2g, Eg, 2A2u, B2u, 3Eu
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Qualitative MO Diagram
 

y

z

x

(replace L5 and L6 
with X1 and X2)

M L3L1

L2

L4

X1

X2

L6

M L3L1

L5

L2

L4

X1 and X2 lower in the spectrochemical series and are 
weaker σ donors.  Antibonding z2 orbital pushed up 
less by antibonding interaction with the X ligands.
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Configurations and States

a1g  z2

b1g x2 - y2

b2g  xy
eg (xz,yz)

A1g Eg B2g Eg A2g

eg ⊗ a1g =
Eg

b2g ⊗ a1g =
B2g

eg ⊗ b1g =
Eg

b2g ⊗ b1g =
A2gEg B2g Eg A2g

48



Electronic Symmetries

Electronic Transitions
A1g → A2g A1g → B2g A1g → Eg

ψ elec.
gnd zψ elec.

exc

ψ elec.
gnd x, y( )ψ elec.

exc

49

Allowedness w/ Vibronic Coupling

Use info. with Qualitative Energy  
Diagram to assign spectrum

Electronic 
Transition

Polarization 
   z              (x,y)

forbidden allowed

forbidden allowed

allowed allowed  

A1g → A2g

A1g → B2g

A1g → Eg
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Graphical Summary
• Because of the Oh ! D4h 

symmetry correlations, the  
specific configurations shown 
correspond to only the states 
shown - even in Oh . 

• The dashed transitions are 
dipole and vibronically 
forbidden in z-polarization. 

• The x,y-polarized transition 
at ~23,000 cm–1 is difficult to 
assign.  The  1B2g state should 
be relatively favored by the 
weaker ligand field of the Cl 
ligands, but there is less e–-e– 
repulsion in the 1A2g state. 1A1g

xy
x2-y2

xy
z2

1T1g

1T2g

1Eg

1B2g
1A2g

1Eg

xy

x2-y2
z2

xy

x2-y2
z2

Oh D4h

1A1g

  
Oh: E(1T2g ) − E(1T1g ) = 16B ≈ 17000 cm–1
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Beyond just Symmetry

• Information about e-e 
repulsion can be 
obtained from the Oh 
Tanabe-Sugano 
diagram. 
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Graphical Tools for getting 
relative Energies of States

 Energies of each configuration are 
given by counting the orbital energies, 
adding up the repulsions (Jij) and 
subtracting the exchange 
“stabilizations” (Kij) between like spins.

φa

φb

φc

1Ψgr

φa

φb

φc

3Ψex
(MS = 1)

φa

φb

φc

φa

φb

φc

Ψex(A)

φa

φb

φc

3Ψex
(MS = –1)

Ψex(B)

3Ψex=
1/√2(Ψex(A) + Ψex(B))

1Ψex=
1/√2(Ψex(A) –Ψex(B))
(MS = 0)
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A Graphical Scheme for getting 
relative Energies of States

  

Egr =  2εa + 2εb + Ja,a + Jb,b + 4Ja,b − 2Ka,b

Eex
(3) =  2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( ) − Kb,c

Eex
A =  2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( )

Eex
B =  2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( )

Eex
A+B + Eex

A−B = Eex
A + Eex

B   ;  but Eex
A+B = Eex

(3)  and Eex
A−B = Eex

(1)

∴Eex
(1) = Eex

A + Eex
B − Eex

(3)

Eex
(1) = 2εa + εb + εc + Ja,a + 2Ja,b + 2Ja,c + Jb,c − Ka,b + Ka,c( ) + Kb,c

Eex
(1) − Eex

(3) = +2Kb,c
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A Graphical Scheme for getting 
relative Energies of States

1Ψgr

1Ψex=
1/√2(Ψex(A) – Ψex(B))

3Ψex=
1/√2(Ψex(A) + Ψex(B))

(MS = 1, –1) (MS = 0)

Ψex(A),Ψex(B) 2Kb,c
Kb,c
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Some Coulomb and Exchange Integrals
       Coulomb and Exchange Integrals                     Racah Parameters

Jxy,xy = Jxz ,xz = J yz ,yz = Jz2 ,z2 = Jx2− y2 ,x2− y2     A+ 4B + 3C

Jxz ,yz = Jxy,yz = Jxy,xz = Jx2− y2 ,yz
= J

x2− y2 ,xz
    A− 2B +C

J
xy,z2 = Jx2− y2 ,z2                                                A− 4B +C

J
yz ,z2 = Jxz ,z2                                                     A+ 2B +C

J
x2− y2 ,xy

                                                           A+ 4B +C

Kxy,yz = Kxz ,yz = Kxy,xz = Kx2− y2 ,yz
= K

x2− y2 ,xz
3B +C     

K
xy,z2 = Kx2− y2 ,z2                                               4B +C     

K
yz ,z2 = Kxz ,z2                                                    B +C      

K
x2− y2 ,xy

                                                           C           

∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ
x2− y2 (2)dτ1dτ 2       −3B        

B ≈ 650−1100 cm−1 C ≈ 2500−5500 cm−1

For 1st row transition metals, Racah parameters B and C  have typical ranges shown.
(State energy differences don't involve A.)

 The Coulomb (Jij) 
and exchange (Kij) 
integrals shown 
here can often be 
used to calculate 
state energy 
differences.
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Complex d-orbital J and K’s

 The Coulomb (Jij) 
and exchange (Kij) 
integrals shown 
here can often be 
used to calculate 
state energy 
differences.

J0,0                                                    A+ 4B + 3C
J2,2 = J−2,−2 = J2,−2                           A+ 4B + 2C
J2,1 = J−2,−1 = J2,−1 = J−2,1               A− 2B +C
J2,0 = J−2,0                                        A− 4B +C
J1,1 = J−1,−1 = J1,−1                           A+ B + 2C
J1,0 = J−1,0                                        A+ 2B +C
K1,−1                                             6B + 2C
K2,−2                                    C
K2,1 = K−2,−1                                6B +C
K2,−1 = K−2,1                        C
K2,0 = K−2,0                                    4B +C
K1,0 = K−1,0                                   B +C

B ≈ 650−1100 cm−1 C ≈ 2500−5500 cm−1

For 1st row transition metals, Racah parameters B and C  have typical ranges shown.
(State energy differences don't involve A.)
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Slater-Condon and Racah Parameters

  

The "Slater-Condon parameters" are defined by

F k ≡ e2 r1
2

0

∞

∫ r2
2

0

∞

∫
r<

k

r>
k+1

Rnl (r1)
2

Rnl (r2 )
2

dr2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dr1   ;   
r<

k

r>
k+1

=

r1
k

r2
k+1

 if  r2 > r1

r2
k

r1
k+1

 if  r1 > r2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

and (in the d-shell):  F0 ≡ F 0  , F2 =
F 2

49
 , F4 =

F 4

441
The "Racah Parameters" are related to the Slater-Condon parameters by

A = F0 − 49F4

B = F2 − 5F4

C = 35F4
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Example: B parameter for V3+

3F state:            |3F ; 3 1〉 = | 2+1+〉 
E(3F) = 2hd + J2,1 – K2,1  

= 2hd + (A – 2B + C) – (6B + C)  
= 2hd + A – 8B 
3P state:  
|3P ; 1 1 〉 = √3/5 |1+ 0+ 〉– √2/5 |2+ –1+ 〉   
E(1+ 0+) = 2hd + J1,0 – K1,0  
= 2hd + (A + 2B + C) – (B + C)  
= 2hd + A + B 

E(2+ –1+) = 2hd + J2,–1 – K2,–1  
= 2hd + (A – 2B + C) – C  
= 2hd + A – 2B 
E(3P) = E(1+ 0+) + E(2+ –1+) – E(3F)  
= 2hd + A + 7B 
E(3P) – E(3F) = 15B = 12,924 cm–1       
B = 861.7 cm–1
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Energies 
of d2 and 
d3 Terms

N Term Symbol Slater–Condon 

Expression 

Racah Expression 

 3F F0 – 8F2 – 9F4 A – 8B  

 3P F0 + 7F2 – 84F4 A + 7B  

d2 1G  F0 + 4F2 + F4 A + 4B + 2C  

 1D  F0 – 3F2 + 36F4 A – 3B + 2C  

 1S  F0 + 14F2 – 126F4 A + 14B + 7C  

 4F 3F0 – 15F2 – 72F4 3A – 15B  

 4P 3F0 – 147F4 3 A  

 2H  3F0 – 6F2 – 12F4 3A – 6B + 3C  

d3 
2P 3F0 – 6F2 – 12F4 3A – 6B + 3C  

 2G  3F0 – 11F2 + 13F4 3A – 11B + 3C  

 2F 3F0 + 9F2 – 87F4 3A + 9B + 3C  

 2D 
 = 3, + 
 = 1, – 

3F0 + 5F2 + 3F4 
± (193F2

2 – 1650F2F4 
+ 8325F4

2)1/2 

3A – 3B + 5C  
± (193B2 + 8BC + 4C2)1/2 

 
 *Condon and Shortley, The Theory of Atomic Spectra, p. 202, p. 206.

*
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Tanabe-Sugano ∆E’s and the Scheme

Worked out details: singlet states example for 
the high-field limit for the d6 case.

  

1A1g :  6εt2g
+ 3Jxy,xy +12Jxy,xz − 6Kxy,xz

1T1g :  5εt2g
+ εeg

+ 2Jxy,xy + J
x2 − y2 ,xy

+12Jxy,xz − 6Kxy,xz + K
x2 − y2 ,xy

1T2g :  5εt2g
+ εeg

+ 2Jxy,xy + J
xy,z2 + 8Jxy,xz + 4J

xz ,z2 − 4Kxy,xz − 2K
xz ,z2 + K

xy,z2

E(1T2g ) − E(1T1g ) =

J
xy,z2 − J

x2 − y2 ,xy( ) + 4 J
xz ,z2 − Jxy,xz( ) + 2 Kxy,xz − K

xz ,z2( ) + K
xy,z2 − K

x2 − y2 ,xy( )
= −8B + 4(4B) + 2(3B − B) + (4B − 0) = 16B

Note: The exchange contributions are positive because these 
are the singlet states - see the diagram - back six slides!
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Beyond just 
Symmetry

• Information about e-e 
repulsion can be 
obtained from the Oh 
Tanabe-Sugano 
diagram.  

In the high-field limit
E(1T2g) – E(1T1g) = 16B
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Polarized Spectra, 
Dichroism of [trans-

CrF2(en)2]+

• [trans-CrF2(en)2]+ has virtual D4h 
symmetry.   

• For two directions of the electric vector 
(for which spectra are shown), some 
bands are completely absent 
(extinction directions). Which 
molecular axis (axes?) correspond to 
direction I? Direction II? 

• Can you assign the transitions?

Dubicki, L., Hitchman, M.A., Day, P., Inorg. Chem., 1970, 9, 188.

Directions indicate the 
electric vector orientations.
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Vibrations of the trans-[CrF2N4] group

_ On p. 293 of Cotton’s text, he gives 
2A1g, B1g, B2g, Eg, 2A2u, B1u, 3Eu

This should be 
2A1g, B1g, B2g, Eg, 2A2u, B2u, 3Eu
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Quadruply Bonded 
Systems

14,00015,00016,000
1/ λ (cm–1)

δ → δ* (1A1g → 1A2u) z-polarized 
spectra of [(C4H9)4N]2[Re2Cl8] at 
293 K, 77 K, and 5 K.

δ → δ* transition

[Mo2Cl8]4– 

~18-20 × 103 cm–1

[Re2Cl8]2– 

14 × 103 cm–1

[Mo2(SO4)4]4– 

~18 × 103 cm–1

See Cotton &  
Walton, Ch. 10

Required Reading: Acc. Chem. 
Res., 2000, 33, 483-90.
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Quadruply Bonded Systems

[Mo2(SO4)4]3– 

~6 × 103 cm–1

[Mo2(SO4)8]4– 

~18 × 103 cm–1

[Tc2Cl8]3– 

~5.8 × 103 cm–1

Why are these so 
much lower in 
frequency (energy)?

See Cotton &  
Walton, Ch. 10 5h

0h
1h

2h

5h

0h

1h

2h

17001600150014001300120011001000900800700600500400
λ(nm)

δ → δ* transition
δ → δ* transition
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Bonding Scheme

σ

π

δ

δ∗

π∗

σ∗

These lie high in 
energy (M-L σ*) 

D4h

a2u

eg

b1u

b2g

eu

a1g

M M
L

LL

LL

L

L

L
z

y
x

δ  → δ*
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δ 2 configuration

1A1g

(MS = 0)

σ

π

δ(b2g)

δ∗(b1u)

σ

π

δ

δ∗

σ

π

δ

δ∗

σ

π

δ

δ∗

σ

π

δ

δ∗

σ

π

δ

δ∗

1A1g
3A2u 3A2u

1,3A2u
1,3A2u

Ψ(A) Ψ(B)(MS = –1)(MS = 1)

W

Triplet and singlet 
excited state 
(1,3A2u) energies:

Ψ(1A2u)=
1/√2(Ψ(A) – Ψ(B))

Ψ(3A2u)=
1/√2(Ψ(A) + Ψ(B))

(MS = 1, –1) (MS = 0)

Ψ(A), Ψ(B)
2Kδ,δ∗ = Jaa – Jab

Kδ,δ∗

W

W– Kδ,δ∗

W+Kδ,δ∗
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δ 2-δ∗2 1A1g state configuration interaction

 Both configurations have 1A1g symmetry and 
since W is modest, the δ*2 configuration 
contributes significantly to the ground state.

δ(b2g)

δ∗(b1u)
W

δ

δ∗

1A1g
1A1g

                     δδ     δ *δ *

   δδ

δ *δ *
 

−E Kδδ*

Kδδ* 2W − E
= 0

The δ  orbital energy has been
chosen as the zero of energy.

E =W ± W 2 + Kδδ*
2

   

Ψδδ =  δ (1)δ (2)
α1β2 − β1α2

2

⎛

⎝⎜
⎞

⎠⎟
  ;   Ψδ*δ* =  δ *(1)δ *(2)

α1β2 − β1α2

2

⎛

⎝⎜
⎞

⎠⎟

ΨδδH∫ Ψδ*δ*dτ = δ (1)δ (2)
1

r12
∫ δ *(1)δ *(2)dτ = Kδδ* =

1
2

Jaa − Jab⎡⎣ ⎤⎦

69

δ 2-δ∗2 1A1g state configuration interaction

The lower energy solution is the ground state, Ψgr = cδδΨδδ + cδ*δ*Ψδ*δ*.  

To get the coefficients plug the lower energy E =W − W 2 + Kδδ*
2  into

−E Kδδ*

Kδδ* 2W − E

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

cδδ
cδ*δ*

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

0

⎡

⎣
⎢

⎤

⎦
⎥

In the limit of weak overlap, Kδδ* ≫W  ,  
cδ*δ*

cδδ
∼

W
Kδδ*

−1
⎛

⎝⎜
⎞

⎠⎟
→ −1

In the limit of big overlap, Kδδ* ≪W  ,  
cδ*δ*

cδδ
∼
−Kδδ*

2W
→ 0

⇒   
−W + W 2 + Kδδ*

2 Kδδ*

Kδδ* W + W 2 + Kδδ*
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cδδ
cδ*δ*

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

This yields the ratio of the configurational mixing 
cδ*δ*

cδδ
=
W − W 2 + Kδδ*

2

Kδδ*
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δ 2-δ∗2 1A1g states - the weak overlap limit

In the limit	of	weak	overlap, the configurational mixing becomes equal:

Ψgr (
1A1g )→1 2 Ψδδ −Ψδ*δ*( ). 

 Factoring the common spin part (keeping only the spatial part):

1 2 Ψδδ −Ψδ*δ*( ) = 1
2

δ (1)δ (2)−δ *(1)δ *(2)⎡
⎣

⎤
⎦

α1β2 − β1α2

2

⎛
⎝⎜

⎞
⎠⎟

Concentrating on the spatial part:
Ψδδ −Ψδ*δ* ∼ χ A(1)+ χB(1)( ) χ A(2)+ χB(2)( )− χ A(1)− χB(1)( ) χ A(2)− χB(2)( )

Ψδδ −Ψδ*δ* ∼ χ A(1)χB(2)+ χB(1)χ A(2)+ χ A(1)χ A(2)+ χB(1)χB(2)( )
                      + χ A(1)χB(2)+ χB(1)χ A(2)− χ A(1)χ A(2)− χB(1)χB(2)( )

Only the first terms survive, and we obtain the valence	bond	wavefunction:

Ψgr (
1A1g )→1 2 Ψδδ −Ψδ*δ*( )= 1

2
χ A(1)χB(2)+ χB(1)χ A(2)⎡⎣ ⎤⎦

α1β2 − β1α2

2

⎛
⎝⎜

⎞
⎠⎟

  (covalent)

If one works through the excited 1A1g  state, it is the ionic terms that survive:

Ψex (
1A1g )→1 2 Ψδδ +Ψδ*δ*( ) = 1

2
χ A(1)χ A(2)+ χB(1)χB(2)⎡⎣ ⎤⎦

α1β2 − β1α2

2

⎛
⎝⎜

⎞
⎠⎟

  (ionic)
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δ 2-δ∗2: the 1,3A2u states
The A2u  states can be written directly:

Ψ(3A2u ) = 1
2

δ (1)δ *(2)−δ (2)δ *(1)⎡
⎣

⎤
⎦

α1α2

α1β2 + β1α2

2
β1β2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Ψ(1A2u ) = 1
2

δ (1)δ *(2)+δ (2)δ *(1)⎡
⎣

⎤
⎦

α1β2 − β1α2

2

⎛
⎝⎜

⎞
⎠⎟

Concentrating on the spatial parts:

Ψ(1,3A2u ) ∼ χ A(1)+ χB(1)( ) χ A(2)− χB(2)( )± χ A(1)+ χB(1)( ) χ A(2)− χB(2)( )   – : triplet
+ : singlet

Only the covalent terms survive for the triplet; only the ionic terms survive for the singlet:

Ψ(3A2u ) = 1
2

χ A(1)χB(2)− χB(1)χ A(2)⎡⎣ ⎤⎦
α1β2 + β1α2

2

⎛
⎝⎜

⎞
⎠⎟

  (covalent)

Ψ(1A2u ) = 1
2

χ A(1)χ A(2)− χB(1)χB(2)⎡⎣ ⎤⎦
α1β2 − β1α2

2

⎛
⎝⎜

⎞
⎠⎟

  (ionic)
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“δ→δ∗  transition” in the δ 2 configuration
• The dipole-allowed 

transition is 1A1g → 
1A2u, which we’ve seen 
to be more 
complicated than the 
fairly simply described 
2B2g → 2A1u transition 
for a δ 1 configuration.   

• The ground state is 
more covalent, the 
excited state is more 
ionic (but nonpolar!).

Energy

Ψ(1A2u)

Ψ(3A2u)

W

W– Kδ,δ∗

W+Kδ,δ∗

2Kδ,δ∗ = Jaa – Jab

W+[ Kδ,δ∗+ W
2 ]1/2

Ψgr(
1A1g)

Ψex(
1A1g)

2

W– [Kδ,δ∗+ W
2 ]1/22

Kδ,δ∗+[Kδ,δ∗+ W
2 ]1/22
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“δ→δ∗  transition” in the δ 2 configuration, cont.

The spectra we’ve seen 
in the previous slides 
indicate that δ  bond is 
highly correlated, with 
the δ-δ*  orbital 
splitting being perhaps 
slightly smaller than 
the e-e repulsion 
between pairs of 
electrons in the MOs in 
the quadruple bonds.

Energy

Ψ(1A2u)

Ψ(3A2u)

W

W– Kδ,δ∗

W+Kδ,δ∗

2Kδ,δ∗ = Jaa – Jab

W+[ Kδ,δ∗+ W
2 ]1/2

Ψgr(
1A1g)

Ψex(
1A1g)

2

W– [Kδ,δ∗+ W
2 ]1/22

Kδ,δ∗+[Kδ,δ∗+ W
2 ]1/22

ΔE = Kδ ,δ* + W 2 + Kδ ,δ*
2 .  For the spectra we've seen, ΔE ! 3W  (i.e., the transition energy for the δ 2  

cases are about 3 times larger than for the δ 1 cases.) That corresponds to W ! 3
4 Kδ ,δ* =

3
4 (Ja,a − Ja,b). 
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δ 2-δ∗2 1A1g state configuration interaction

If we plug in Kδ ,δ* !
4
3W  into the expression for configurational mixing, 

we obtain 
cδ*δ*

cδδ
=
W − W 2 + 16

9 W
2

4
3W

= − 1
2

This is also indicative of highly correlated bond, but one where overlap is still important.
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