

Good Undergraduate Background Text

- Housecroft & Sharpe, "Inorganic Chemistry", 4th Edition, Chapters 19 and 20.
- We cover more, but this chapter fills in almost everything I haven't done in detail.
- Alternative: Shriver & Atkins, Chapter 19.

Spectroscopy: The Big Picture Core-level Valence transitions transitions Micro-Radio-Hard Far Submm-X-rav X-rav UV UV IR mmw wave wave wave 10 cm→l_λ 100 Å 200<mark>0 Å</mark> 0.7 um 2.5 µm 25 µm 1 mm 10 nm 200 nm 400 nm 700 nm 2500 nm 5×10⁴ 2.5×10⁴ 1.4×10⁴ (cm⁻¹) 2×10^{7} 10⁶ 4000 10 0.1 12×10⁹ 240×10⁶ $12 \times 10^{6} 600 \times 10^{3} 300 \times 10^{3} 170 \times 10^{3}$ 120 1.2 E (J mol⁻¹ 48×10^{3} 5×10 (eV) 0.00001 120 000 2400 0.05 0.001 3×10^{19} 6×10^{17} 3×10^{16} 1.5×10^{15} 7.5×10^{14} 4×10^{14} 1.2×10^{14} 1.2×10^{14} 3×10^{11} 3×10⁹ v (Hz) XRF Electronic Rotational NMR EPR UPS NOR Mössbauer XPS Vibrationa SPECTROSCOPIC TECHNIQUES GED XRD Muclear energies Chemical energies Molecular energie Spin energie

Electronic Energy Scales - The Hierarchical Approach

- The largest energy level splittings in atoms and molecules due to principal quantum number changes (and concomitant differences in screening). This underlies our familiar focus on valence vs. core-levels.
- Energy level splittings between different *l* levels (e.g., between *s*, *p*, *d*... electrons) are often comparable to bonding effects evident in both the concept of "hybrid orbitals" and in mixed orbital parentage of molecular orbitals.
- In T.M. complexes, *e--e-* repulsion *differences* are often comparable to M-L bonding energies. A big part of ligand-field theory deals with the complications that arise from the competition between these energetic effects.

5

Carbon: Atomic Energy Levels

	Configuration	Term	J	Level	
Experimental atomic				(cm ⁻ ')	
energy levels (cm ⁻¹).	2s ² 2p ²	³ P	0	0	
			1	16.40	
sp ³ ⁵ S			2	43.40	
l · · · · · · · · · · · · · · · · · · ·		term		29.58	
	2s ² 2p ²	¹ D	2	10 192.63	
10		term		10 192.63	
28,906 /	$2s^22p^2$	¹ S	0	21 648.01	
/		term		21 648.01	
/ ₁ _D	2s2p ³	⁵ S°	2	33 735.20	
l l l l l l l l l l l l l l l l l l l		term		33 735.20	
s ² p ² 10,163	2s ² 2p(² P°)3s	³ P°	0	60 333.43	
` ³ P <u> </u>			1	60 352.63	
e ⁻ -e ⁻			2	60 393.14	
differences		term		60 373.00	
	2 <i>s</i> ²2p(²P°)3 <i>s</i>	¹ P°	1	61 981.82	
http://physics.nist.gov/PhysRefData/ASD/index.html					

- MO theory of transition metals: Octahedral coordination,
- σ-donors (all ligands)
- π-donors (halides, amides, alkoxides, thiolates, ...)
- π -acceptors (CO, NO⁺, CN⁻, CNR)

Bonding and Electronic Structure

- Molecular orbital picture for Lewis acid-base interaction
- d-orbitals acceptor orbitals on transition metals
- MO picture for octahedral complexes
- Low-spin vs. high-spin complexes; ligand-field splitting vs. pairing energy

9

Metal-Ligand bonding

- Concepts of "hardness" and "softness" already discussed (qualitatively).
 (Pearson's 1963 JACS paper introducing these concepts is posted in the web site "handouts" section.)
- Intro to Ligand fields an MO scheme for a "typical" octahedral transition metal complex.

10

Background Topics - increasing Δ_o

• Spectrochemical Series:

$$\begin{split} & \text{NO}^+ > \text{CR}_3^- > \text{CO} \ge \text{PF}_3 \ge \text{CN}^- > \text{NO}_2 > \text{NH}_3 > \\ & \text{H}_2\text{O} > \text{OH}^- > \text{F}^- > \text{S}^{2-} > \text{Cl}^- > \text{Br}^- > \text{I}^- \end{split}$$

the series represents the confluence of several trends in electronegativity (greater), σ -donation (weaker), and decreasing/increasing π -donation/ acceptance

• Metal trends:

 $Mn^{2+} < Ni^{2+} < Co^{2+} < Fe^{2+} < V^{2+} < Fe^{3+} < Cr^{3+} < V^{3+} < Co^{3+} < Mn^{4+} < Rh^{3+} < Pd^{4+} < Ir^{3+} < Re^{4+} < Pt^{4+}$

13

Hydrolysis constants of Metal ion complexes give acidic solutions

14

	-	
Complex	Δ_{o} (10 Dq)	Ox. State
[Co(H ₂ O) ₆] ²⁺	9,000	Co(II)
[Co(H ₂ O) ₆] ³⁺	18,000	Co(III)
[Co(NH ₃) ₆] ²⁺	12,000	Co(II)
[Co(NH ₃) ₆] ³⁺	22,870	Co(III)
[CoF ₆] ³⁻	13,000	Co(III)
[Co(CN) ₆] ³⁻	32,000	Co(III)

Energy scale discussion

\checkmark	<i>e.g.</i> the Δ values (in cm ⁻¹) VCl ₄ 7900 [VCl ₆] ² 15,400 [NiCl ₄] ² 3850 [NiCl ₆] ⁴ 7,700
More Examples	$[VCI_6]^{4-}$ 9,350 $[V(OH_2)_6]^{2+}$ 12,350 $[VCI_6]^{3-}$ 12,100 $[V(OH_2)_6]^{3+}$ 16,900 $[VCI_6]^{2-}$ 15,400
	$[Co(NH_3)_6]^{3+}$ 22,870 cm ⁻¹ $[Rh(NH_3)_6]^{3+}$ 34,100 $[Ir(NH_3)_6]^{3+}$ 41,200
	[Fe(OH ₂) ₆] ³⁺ 14,000 [Ru(OH ₂) ₆] ³⁺ 28,600

Background Topics - more on bonding

- Other geometries: e.g., tetrahedral, trigonal bipyramid, square planar
- Simple VB theory:

In spectroscopy, the Pauling-style VB approach is nearly useless, but it provides a handy way to simplify bonding in parts of the molecule where details of electronic structure are not important to the task at hand (example: where is the d²sp³ hybridization scheme a useful concept for octahedral complexes?)

17

Physical Background - Symmetry Review

In the handout, "Transitions Between Stationary States • (Adapted from Harris and Bertolucci, p. 130)", an expression for the probability that a system in its ground state, Ψ_0 can be stimulated by radiation into an excited state, ψ_1 , is derived:

$$\Psi(\mathbf{r},t) = c_0(t)\Psi_0(\mathbf{r},t) + c_1(t)\Psi_1(\mathbf{r},t)$$

$$\frac{l(c_1 * c_1)}{dt} \propto \mathcal{E}_0^2 \left(\boldsymbol{\mu}_{01}^{x^2} + \boldsymbol{\mu}_{01}^{y^2} + \boldsymbol{\mu}_{01}^{z^2} \right) \text{ assuming } c_0(0) = 1 \text{ and } c_1(0) = 0.$$

$$\mathcal{E}_0^2 \text{ is proportional to the light intensity and}$$

 $|\psi_0 d\tau|$ are the transition moment integrals. $\boldsymbol{\mu}_{01}^{x,y,z} = e | \boldsymbol{\psi}_{1}^{x}$

This expression applies to an integral over all wavelengths of incident light (in the dipole approximation) and was the form used to evaluate whether an electron transition was symmetry allowed.

21

Allowedness

- In group theory, prescription for deciding whether a transition is dipole-allowed is straightforward:
 - If the ground and excited states respectively belong to the Γ_0 and Γ_1 representations of the point group of the molecule in question, then a transition is dipole-allowed if and only if

- $\Gamma_0 \otimes \Gamma_1 \text{ contains} \begin{cases} \Gamma_x \text{ for } x \text{-polarized light} \\ \Gamma_y \text{ for } y \text{-polarized light} \\ \Gamma_z \text{ for } z \text{-polarized light} \end{cases}$
- Spin doesn't change: $\Delta S = 0$. For states where large spin-orbit mixing is possible (large ζ and/or small ΔE between mixed states), the rule is weakened.

Types of Transitions: d-d

- a) intramolecular e- transfer within the *d*-orbital manifold
- b) Values for ε vary: up to 1,000 M⁻¹ cm⁻¹ (moderately intense) for spin-allowed transitions in non-centrosymmetric molecules; ~10 M⁻¹cm⁻¹ for spin-allowed transitions in centrosymmetric molecules (weak); ~10⁻¹ M⁻¹cm⁻¹ for spin-forbidden transitions in centrosymmetric molecules (very weak).
- c) 1-e- transitions much more intense (2-e- transitions typically 10-2 times weaker)
- d) Shoulders and/or broad peaks expected where Jahn-Teller distortions apply.

Nephelauxetic Series

- Nephelauxetic Ligand Series: $F \langle H_2O \rangle$ $H_3 \langle en \rangle$ [ox]²- $\langle [NCS] - \langle CI - \langle [CN] - \langle Br - \langle I - \rangle$
- This series orders the extent to which ligands induce the nephelauxetic (cloud expanding) effect in coordination complexes in which they are bound. Quantitatively, this is measured in the extent to which electron-electron repulsion is reduced in the metal coordination complex vs. the free metal ions; i.e., in the ratio $(B_0 B)/B_0$ where *B* is the measured empirical Racah parameter and B_0 is the free-ion value.
- Metal trends: $Mn^{2+} < Ni^{2+} \approx Co^{2+} < Mo^{2+} < Re^{4+} < Fe^{3+} < Ir^{3+} < Co^{3+} < V^{3+} < Mn^{4+}$

Polarized Spectra, Example

- Both D_{4h} and D_{2d} CuCl₄²⁻ ions are present, but the distorted tetrahedral ions give ~20 times more intense absorption.
- The [101] crystal axis is nearly parallel to the D_{2d} ions' S_4 axes.
- Can you assign the transitions?

34

Vibronic Coupling

- Because they have g g character, the *d*-*d* transitions of complexes of the transition metals are "forbidden" (LaPorte forbidden).
- Complexes with noncentrosymmetric coordination geometries (e.g., tetrahedral) have more intense *d-d* spectra.
- Spectra in centrosymmetric (e.g., octahedral) complexes "acquire intensity" via <u>vibronic coupling</u>.

Including the effects of coupling demands a modified wavefunction. In the simplest approximation, $\psi_{elec.}$ and $\psi_{vib.}$ not separable.

:. Consider the product, $\psi_{elec.}\psi_{vib.}$, for examining selection rules:

 $\int \boldsymbol{\psi}_{elec.}^{gnd} \boldsymbol{\psi}_{vib.}^{gnd} \, \hat{\mathbf{d}} \boldsymbol{\psi}_{elec.}^{ex} \boldsymbol{\psi}_{vib.}^{ex} d\tau = 0$

 $\psi_{vib.}^{gnd}$ generally belongs to totally symmetric rep. (otherwise, "hot bands" are involved). \therefore consider,

$$\int \psi_{elec.}^{gnd} \, \hat{\mathbf{d}} \psi_{elec.}^{ex} \psi_{vib.}^{ex} d\tau = 0$$

37

 D_{4h} CuCl₄²⁻ 290 F E (mole⁻¹ L cm¹ 200 • T-dependence of band positions and intensities is different Energy (cm-1) for bands centered at Temperature dependence of the spectrum of the planar $CuCl_4^{2-}$ ion in z polarization. In order of increasing intensity, the spectra ~16,500 cm⁻¹ and were measured at 10, 60, 100, 200, and 290 K. 14,000 cm⁻¹ (at 290 K). (a) (metH)_CuCl • Explain! Solomon & Lever, "Inorg. Elec. Structure and Spec." Vol. 1, Chapter 3 - by Hitchman and Riley, p. 246. 100 200 Temperature (K)

 D_{4h} $E 2C_4 C_2(C_4^2) 2C_2'$ A_{2g} -1 -1-1R, B_{1a} -1-1 $x^2 - v^2$ B_{2g} -1 -11 1 xy E_{c} 0 -2 0 0 0 $(R_{\rm x}, R_{\rm y})$ (xz, yz) A_{lu} 1 A_{2u} 1 -1-1Z $B_{1,i}$ 1 -1-1 B_{2u} E_{u} -1 -10 0 0 0 0 (x, y)1 -1-3 -11 -1 9 -12 0

Facts of the $[trans-CoCl_2(en)_2]^+$ case.

- Spectrum: Fig. 9.13 in Cotton (from S. Yamada and R. Tsuchida, *Bull. Chem. Soc. Japan*, 25, 127, **1952**).
- The solution spectrum is virtually identical with [*trans*-CoCl₂(NH₃)₄]⁺ ∴ Virtual D_{4h} symmetry is a reasonable assumption.
- Both Cotton and, following him, Harris and Bertolucci, have made an error in the analysis of this case which leads to some wrong/problematic predictions.

Vibronic Coupling in [*trans*-CoCl₂(en)₂]⁺

- _ Virtual D_{4h} symmetry, d^6 , low-spin
- The Co^{III} ion is d^6 , low-spin, in approximate O_h symmetry, ground state configuration is $(t_{2g})^6$, ${}^1A_{1g}$ state.
- Dipole allowed transitions? Lowest energy singlets? See Tanabe-Sugano diagram.
- $_{-}$ O_h to D_{4h} correlations?
- _ Vibrations of the [trans-CoCl₂N₄] grouping

45

Vibrations of the *trans*-[CoCl₂N₄] group

- On p. 293 of Cotton's text, he gives $2A_{1g}$, B_{1g} , B_{2g} , E_g , $2A_{2u}$, B_{1u} , $3E_u$
- This should be $2A_{1g}, B_{1g}, B_{2g}, E_g, 2A_{2u}, B_{2u}, 3E_u$

Allowedness w/ Vibronic Coupling

Electronic	Polarization	
Transition	Z	(<i>x</i> , <i>y</i>)
$A_{1g} \rightarrow A_{2g}$	forbidden	allowed
$A_{1g} \rightarrow B_{2g}$	forbidden	allowed
$A_{1g} \rightarrow E_g$	allowed	allowed
Use info. with Qualitative Energy		
Diagram to assign spectrum		

50

Graphical Summary

- Because of the O_h → D_{4h} symmetry correlations, the specific configurations shown correspond to only the states shown - even in O_h.
- The dashed transitions are *dipole and vibronically forbidden* in *z*-polarization.
- The *x*,*y*-polarized transition at ~23,000 cm⁻¹ is difficult to assign. The ${}^{1}B_{2g}$ state should be relatively favored by the weaker ligand field of the Cl ligands, but there is less e⁻e⁻ repulsion in the ${}^{1}A_{2g}$ state.

 O_h

 D_{4h}

Beyond just Symmetry $a^{6} = \begin{cases} 1058\\ 1065 \end{cases}$

 Information about e-e repulsion can be obtained from the O_h Tanabe-Sugano diagram.

Gra rela	phica tive E	l Tool Inergi	s for g es of S	etting tates	r '
v	<i>\phi_c</i>	$- \phi_c$	ϕ_c	ϕ_c	$- \phi_c$
	ϕ_b	-	ϕ_b	$- \phi_b$	ϕ_b
	ϕ_a	ϕ_a	ϕ_a	ϕ_a	ϕ_a
	${}^{1}\Psi_{gr}$	${}^{3}\Psi_{ex}$ $(M_{e}=1)$	${}^{3}\Psi_{ex}$ $(M_{ex} = -1)$	$\Psi_{ex}(\mathbf{A})$	$\Psi_{ex}(\mathbf{B})$
			3	$\Psi_{ex} = \frac{1}{\sqrt{2}} (\Psi_{ex})^2$	$(A) + \Psi_{ex}(B))$
Energies of each of given by counting adding up the rep	configura g the orb oulsions	ation are ital energ (J _{ii}) and	;ies,	$\Psi_{ex} = \frac{1}{\sqrt{2}} (\Psi_{ex}) (M_{S} = 0)$	
subtracting the ex "stabilizations" (A	change K _{ii}) betwe	een like s	pins.		

A Graphical Scheme for getting relative Energies of States $E_{gr} = 2\varepsilon_{a} + 2\varepsilon_{b} + J_{a,a} + J_{b,b} + 4J_{a,b} - 2K_{a,b}$ $E_{ex}^{(3)} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c}) - K_{b,c}$ $E_{ex}^{A} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c})$ $E_{ex}^{B} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c})$ $E_{ex}^{A+B} + E_{ex}^{A-B} = E_{ex}^{A} + E_{ex}^{B} ; \text{ but } E_{ex}^{A+B} = E_{ex}^{(3)} \text{ and } E_{ex}^{A-B} = E_{ex}^{(1)}$ $\therefore E_{ex}^{(1)} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c}) + K_{b,c}$ $E_{ex}^{(1)} = 2\varepsilon_{a} + \varepsilon_{b} + \varepsilon_{c} + J_{a,a} + 2J_{a,b} + 2J_{a,c} + J_{b,c} - (K_{a,b} + K_{a,c}) + K_{b,c}$ $E_{ex}^{(1)} - E_{ex}^{(3)} = +2K_{b,c}$

54

Some Coulomb and Exchange Integrals

Coulomb and Exchange Integrals Racah Parameters $J_{xy,xy} = J_{xz,xz} = J_{yz,yz} = J_{z^2 z^2} = J_{x^2 - y^2 x^2 - y^2}$ A + 4B + 3CThe Coulomb (J_{ii}) $J_{xz,yz} = J_{xy,yz} = J_{xy,xz} = J_{x^2-y^2,yz} = J_{x^2-y^2,xz}$ A-2B+C $J_{yyz^2} = J_{y^2 - y^2 z^2}$ A-4B+Cand exchange (K_{ii}) $J_{y_7, z^2} = J_{y_7, z^2}$ A + 2B + Cintegrals shown $J_{x^2 - v^2, xy}$ A+4B+Chere can often be $K_{xy,yz} = K_{xz,yz} = K_{xy,xz} = K_{x^2-y^2,yz} = K_{x^2-y^2,xz}$ 3B+Cused to calculate $K_{yyz^2} = K_{x^2 - y^2 z^2}$ 4B+Cstate energy $K_{\rm vr} \, {\rm s}^2 = K_{\rm vr} \, {\rm s}^2$ B+Cdifferences. C $K_{x^2-y^2,xy}$ $\int \varphi_{xz}(1)\varphi_{xy}(2)(1/r_{12})\varphi_{yz}(1)\varphi_{yz}(2)d\tau_{1}d\tau_{2}$ -3B $B \approx 650 - 1100 \text{ cm}^{-1}$ $C \approx 2500 - 5500 \text{ cm}^{-1}$ For 1st row transition metals, Racah parameters B and C have typical ranges shown. (State energy differences don't involve A.)

Complex d-orbital J and K's

$J_{0.0}$	A + 4B + 3C	
$J_{2,2} = J_{-2,-2} = J_{2,-2}$	A + 4B + 2C	
$J_{2,1} = J_{-2,-1} = J_{2,-1} = J_{-2,1}$	A-2B+C	T
$J_{2,0} = J_{-2,0}$	A - 4B + C	21
$J_{1,1} = J_{-1,-1} = J_{1,-1}$	A + B + 2C	a
$J_{1.0} = J_{-1.0}$	A+2B+C	ir
<i>K</i> _{1,-1}	6B+2C	h
K _{2,-2}	С	11
$K_{2,1} = K_{-2,-1}$	6B+C	u.
$K_{2-1} = K_{-21}$	C	st
$K_{2,0} = K_{-2,0}$	4B+C	d
$K_{1,0} = K_{-1,0}$	B+C	
$B \approx 650 - 1100 \text{ cm}^{-1}$	$C \approx 2500 - 5500 \text{ cm}^{-1}$	

The Coulomb (J_{ij}) and exchange (K_{ij}) integrals shown here can often be used to calculate state energy differences.

For 1st row transition metals, Racah parameters *B* and *C* have typical ranges shown. (State energy differences don't involve *A*.)

57

 $F^{k} \equiv e^{2} \int_{0}^{\infty} r_{1}^{2} \left[\int_{0}^{\infty} r_{2}^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} |R_{nl}(r_{1})|^{2} |R_{nl}(r_{2})|^{2} dr_{2} \right] dr_{1} \quad ; \quad \frac{r_{<}^{k}}{r_{>}^{k+1}} = \begin{cases} \frac{r_{1}^{k}}{r_{2}^{k+1}} & \text{if } r_{2} > r_{1} \\ \frac{r_{2}^{k}}{r_{2}^{k+1}} & \text{if } r_{1} > r_{2} \end{cases}$ and (in the *d*-shell): $F_{0} \equiv F^{0}$, $F_{2} = \frac{F^{2}}{49}$, $F_{4} = \frac{F^{4}}{441}$ The "Racah Parameters" are related to the Slater-Condon parameters by $A = F_{0} - 49F_{4}$ $B = F_{2} - 5F_{4}$ $C = 35F_{4}$

58

	Ν	Terr
V		
	d^2	
Fnornios		
LIICIQICS		
of d? and		
oj u- unu		
d3 Torms		
n^{-1}	d^3	

4

Ν	Term Symbol	Slater–Condon Expression*	Racah Expression
d ²	^{3}F	$F_0 - 8F_2 - 9F_4$	A - 8B
	³ P	$F_0 + 7F_2 - 84F_4$	A + 7B
	^{1}G	$F_0 + 4F_2 + F_4$	A + 4B + 2C
	^{1}D	$F_0 - 3F_2 + 36F_4$	A - 3B + 2C
	^{1}S	$F_0 + 14F_2 - 126F_4$	A + 14B + 7C
d ³	${}^{4}F$	$3F_0 - 15F_2 - 72F_4$	3A - 15B
	^{4}P	$3F_0 - 147F_4$	3 <i>A</i>
	^{2}H	$3F_0 - 6F_2 - 12F_4$	3A - 6B + 3C
	^{2}P	$3F_0 - 6F_2 - 12F_4$	3A - 6B + 3C
	^{2}G	$3F_0 - 11F_2 + 13F_4$	3A - 11B + 3C
	^{2}F	$3F_0 + 9F_2 - 87F_4$	3A + 9B + 3C
	$\lambda^{2}D$ $\lambda = 3, +$ $\lambda = 1, -$	$\begin{array}{r} 3F_0 + 5F_2 + 3F_4 \\ \pm \left(193F_2^2 - 1650F_2F_4 \\ + 8325F_4^2\right)^{1/2} \end{array}$	$3A - 3B + 5C \pm (193B^2 + 8BC + 4C^2)^{1/2}$

*Condon and Shortley, The Theory of Atomic Spectra, p. 202, p. 206.

the high-field limit for the d⁶ case.

$$\begin{aligned} & (A_{1g}: \ 6\varepsilon_{t_{2g}} + 3J_{xy,xy} + 12J_{xy,xz} - 6K_{xy,xz}) \\ & ^{1}T_{1g}: \ 5\varepsilon_{t_{2g}} + \varepsilon_{e_{g}} + 2J_{xy,xy} + J_{x^{2}-y^{2},xy} + 12J_{xy,xz} - 6K_{xy,xz} + K_{x^{2}-y^{2},xy}) \\ & ^{1}T_{2g}: \ 5\varepsilon_{t_{2g}} + \varepsilon_{e_{g}} + 2J_{xy,xy} + J_{xy,z^{2}} + 8J_{xy,xz} + 4J_{xz,z^{2}} - 4K_{xy,xz} - 2K_{xz,z^{2}} + K_{xy,z^{2}}) \\ & E(^{1}T_{2g}) - E(^{1}T_{1g}) = \\ & \left(J_{xy,z^{2}} - J_{x^{2}-y^{2},xy}\right) + 4\left(J_{xz,z^{2}} - J_{xy,xz}\right) + 2\left(K_{xy,xz} - K_{xz,z^{2}}\right) + \left(K_{xy,z^{2}} - K_{x^{2}-y^{2},xy}\right) \\ & = -8B + 4(4B) + 2(3B - B) + (4B - 0) = 16B \end{aligned}$$

Note: The exchange contributions are <u>positive</u> because these are the <u>singlet</u> states - see the diagram - back six slides!

61

- Information about e-e repulsion can be obtained from the O_h Tanabe-Sugano diagram.
- In the high-field limit $E({}^{1}T_{2o}) E({}^{1}T_{1o}) = 16B$

62

Vibrations of the *trans*-[CrF₂N₄] group

- On p. 293 of Cotton's text, he gives $2A_{1g}$, B_{1g} , B_{2g} , E_g , $2A_{2u}$, B_{1u} , $3E_u$

This should be 2*A*_{1g}, *B*_{1g}, *B*_{2g}, *E*_g, 2*A*_{2u}, *B*_{2u}, 3*E*_u

 $\delta^2 - \delta^{*2} A_{1\alpha}$ states - the weak overlap limit

$$\delta^2$$
- $\delta^{*2} A_{1g}$ state configuration interaction

In the **limit of weak overlap**, the configurational mixing becomes equal:

$$\Psi_{gr}({}^{1}A_{1g}) \rightarrow 1/\sqrt{2}(\Psi_{\delta\delta} - \Psi_{\delta^{*}\delta^{*}}).$$
Factoring the common spin part (keeping only the spatial part):

$$1/\sqrt{2}(\Psi_{\delta\delta} - \Psi_{\delta^{*}\delta^{*}}) = \frac{1}{\sqrt{2}} \Big[\delta(1)\delta(2) - \delta^{*}(1)\delta^{*}(2) \Big] \Big(\frac{\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2}}{\sqrt{2}} \Big)$$
Concentrating on the spatial part:

$$\Psi_{\delta\delta} - \Psi_{\delta^{*}\delta^{*}} - (\chi_{A}(1) + \chi_{B}(1))(\chi_{A}(2) + \chi_{B}(2)) - (\chi_{A}(1) - \chi_{B}(1))(\chi_{A}(2) - \chi_{B}(2))$$

$$\Psi_{\delta\delta} - \Psi_{\delta^{*}\delta^{*}} - (\chi_{A}(1)\chi_{B}(2) + \chi_{B}(1)\chi_{A}(2) + \chi_{A}(1)\chi_{A}(2) - \chi_{B}(1)\chi_{B}(2))$$

$$+ (\chi_{A}(1)\chi_{B}(2) + \chi_{B}(1)\chi_{A}(2) - \chi_{A}(1)\chi_{A}(2) - \chi_{B}(1)\chi_{B}(2))$$
Only the first terms survive, and we obtain the **valence bond wavefunction**:

$$\Psi_{gr}({}^{1}A_{1g}) \rightarrow 1/\sqrt{2}(\Psi_{\delta\delta} - \Psi_{\delta^{*}\delta^{*}}) = \frac{1}{\sqrt{2}} \Big[\chi_{A}(1)\chi_{B}(2) + \chi_{B}(1)\chi_{A}(2) \Big] \Big(\frac{\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2}}{\sqrt{2}} \Big) \text{ (covalent)}$$
If one works through the excited ${}^{1}A_{1g}$ state, it is the ionic terms that survive:

$$\Psi_{ex}({}^{1}A_{1g}) \rightarrow 1/\sqrt{2}(\Psi_{\delta\delta} + \Psi_{\delta^{*}\delta^{*}}) = \frac{1}{\sqrt{2}} \Big[\chi_{A}(1)\chi_{A}(2) + \chi_{B}(1)\chi_{B}(2) \Big] \Big(\frac{\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2}}{\sqrt{2}} \Big) \text{ (ionic)}$$

" $\delta \rightarrow \delta^*$ transition" in the δ^2 configuration, cont.

73

74

 δ^2 - $\delta^{*2} A_{1g}$ state configuration interaction

If we plug in $K_{\delta \delta^*} \simeq \frac{4}{3}W$ into the expression for configurational mixing,

we obtain
$$\frac{c_{\delta^*\delta^*}}{c_{\delta\delta}} = \frac{W - \sqrt{W^2 + \frac{16}{9}W^2}}{\frac{4}{3}W} = -\frac{1}{2}$$

This is also indicative of highly correlated bond, but one where overlap is still important.