
Assignment 2
Due Thursday, February 25, 2010

(1) The free-ion terms are split in an octahedral field in the manner given in this table. 

Splitting of the Free-Ion terms of dn configurations 
in an Octahedral Field
Splitting of the Free-Ion terms of dn configurations 
in an Octahedral Field
Free-Ion Term Terms in Oh

S A1g

P T1g 
D Eg + T2g

F A2g + T1g + T2g

G A1g + Eg + T1g + T2g

H E1g + 2T1g + T2g

I A1g + A2g + Eg + T1g + 2T2g

Formulas that allow one to derive these results are given below.

  

χ(E) = 2J +1    ;    χ(i) = ±(2J +1)

χ(Cα ) =
sin[(J +1 2)α]

sin(α 2)

χ(Sα ) = ±
sin[(J +1 2)(α + π )]

sin[(α + π ) 2]
χ(σ ) = ± sin[(J +1 2)π ]

In these formulas E, C, S, σ, and i refer to the identity, proper rotation, improper rotation, 
reflection, and inversion operations, respectively. The angle of rotation is α. + signs apply  
for a gerade atomic state and – signs apply for an ungerade atomic state, whether the 
point group under consideration has inversion symmetry or not. Examples: a 3P state 
derived from either p2 configuration (u × u) or a d 2 configuration (g × g) give g states.  
However, a 2D state derived from a p3 configuration (u × u × u) gives a u state, while a 2D 
state derived from a d 3 configuration (g × g × g) gives a g state.
The symbol J refers to the angular momentum quantum number of the state under 
consideration. In the Russell-Saunders scheme, J can be replaced by L when considering 
a spatial wave function.

(a) Verify the results given for the D and H states.

(b) For all the states, add two more columns to the table for D4h and D3h point groups. 
(You can sometimes save work by choosing an appropriate subgroup.)

(2) For each of the following pairs of molecules and ions, sketch a d-orbital splitting diagram 
for the parent species and the substituted derivative.  Draw the diagrams for each pair 
side-by-side and show how the orbital energies are expected to change on going from 
parent to derivative. (Explain your answers.)



(a) [PtCl4]2– → trans-PtCl2(NH3)2

(b) [RuCl6]4– → [Ru(CO)Cl5]3–

(c) [Co(NH3)6]3+ → trans-[Co(NH3)4Cl2]+

(3) UV-Visible spectra of two Ni(II) amide complexes, [Ni(DMF)6]2+ and [Ni(DMA)6]2+, are 
shown on the penultimate page.  (DMF = N,N-dimethylformamide, DMA = N,N-
dimethylacetamide)  Using the attached Tanabe-Sugano diagram and the spectra, 
calculate ∆o (= 10 Dq) and the Racah parameters, B, for each complex.  Discuss the 
results in terms of the nephelauxetic effect and the position of the ligands in the 
spectrochemical series.  (Note that the energy  scale is nonlinear; use the wavelength scale 
and convert to cm–1.)

(4) Visible spectra of the OsX62– anions are shown on the next page.  Corresponding regions 
of the spectra of the [Os(py)4X2] complexes are almost indistinguishable from one 
another.  Explain these observations.

(5) This problem is intended to expose a little of the ‘guts’ of ligand field theory.  We will 
calculate the energies of the triplet states of an octahedral d8 complex.  Energy 
expressions for two of the triplet states, the ground 3A2g(t2

6
geg

 2) state and the excited 3T2g
(t2
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 3) state, are easily  obtained because they are the only triplet states with these 
symmetries. (Part a below.)  However, the 3T1g(t2
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 3) and 3T1g(t2
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 4) excited states are of 
the same symmetry, and they mix to an extent that varies as a function of the ligand field 
strength.  In the weak field limit, these two states descend from the free-ion 3F and 3P 
states and the energies are easily  evaluated. However, the wavefunctions for the high-
field 3T1g states can be used as a basis for the zero-field free-ion 3F(3T1g) and 3P(3T1g) 
states. In doing this, we take advantage of the sum rule (see part d): the sum of the 
diagonal elements of the Hamiltonian (the trace) is equal to the sum of the energies, 
irrespective of the basis.  This means that if we were to look at the high-field problem 
using the atomic 3F(3T1g) and 3P(3T1g) wavefunctions, the wavefunctions mix to yield the 
molecular wavefunctions, but the sum of their energies is unchanged (when the ligand 
field mixes them, the upper state moves up exactly as much as the lower state moves 
down).  Conversely, if we use the molecular 3T2g(t2
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 3) and 3T1g(t2
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 4) wavefunctions to 
write the atomic Hamiltonian, the sum of diagonal Hamiltonian matrix elements is equal 
to E(3F) + E(3P).



(a) As pointed out in the preceding (and as is evident in the d8 Tanabe-Sugano diagram), 
the 3A2g ground state and 3T2g excited state are the only triplet states of their respective 
symmetries.  Consequently, you should be able to write a single-configuration 
wavefunction (for a MS = 1 spin component) for each of these states. (This is trivial 
for the ground state.  For the excited state, use the the ‘descent in symmetry’ method 
discussed for Co(III) and Cr(III) complexes in class.)  By use of methods discussed in 
class, write down expressions for the energies using these wavefunctions and the 
formulas given at the tables attached to this homework set.  Your answers should 
involve Racah parameter(s) and ∆o (= 10 Dq).  What is the energy difference between 
the two states?

(b) Using the tables provided, find expressions for the energies of the free-ion 3F and 3P 
states in terms of Racah parameter(s).  What is the energy  difference between the two 
states?

(c) Write a single-configuration wavefunction expression (for the MS = 3/2 spin 
component) for each of the high-field 3T1g states. (Just to save space, let’s call these 
two states 3T1

A
g and 3T1

B
g.)  These are obtained by assuming the only configuration that 

contribute to these states are t2
5
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 3 (for 3T1
A
g) and t2
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 4 (for 3T1
B
g).  Once again, use the 

‘descent in symmetry’ method.  Write down expressions for the energies using these 
wavefunctions in terms of Racah parameter(s) and ∆o (= 10 Dq).  What is the energy 
difference between the two states?

(d) When two orthogonal basis states, Ψp and Ψq, interact with each other via a matrix 
element Hpq, the appropriate secular determinant is 

  

H p − E H pq

H pq Hq − E
= 0 , which has solutions E± =

H p + Hq

2
±

H p − Hq

2

⎛

⎝
⎜

⎞

⎠
⎟

2

+ H pq
2 .

This has two limiting cases that are useful:

   

(i) H p = Hq  , for which E± = H p ± H pq  , and   

(ii)  
H p − Hq

2
 H pq  ,   for which E± → H p  or Hq

Note that in every case the sum of the two energies is the same: E+ + E– = Hp + Hq.

Let’s use this information to work out the way that the two states, 3T1
A
g and 3T1

B
g, mix 

with each other over the entire range of ligand field strengths.  We have already 
examined the high-field limit in part (c); we have two 3T1g states for which we know 
both the energies. Now, using the methods illustrated in class and the formula sheet 
attached on this problem set, find expressions for the free-ion 3F and 3P states.  
Starting with the energies of high-field 3T1

A
g and 3T1

B
g wavefunctions at zero field (∆o = 

0), deduce the off-diagonal matrix element between these states that  yields the correct 
energies of the atomic states, E(3F) and E(3P).

(e) The off-diagonal matrix element you found in part c applies at all ligand-field 
strengths, (∆o ≠ 0).  Therefore, you can write a general 2 × 2 secular determinant in 



the basis of the molecular 3T1
A
g(t2

5
geg

 3) and 3T1
B
g(t2
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 4) wavefunctions that  will give the 
energies of the 3T1

A
g and 3T1

B
g states for all ligand-field strengths.  Solve the secular 

determinant to determine a general expression for the energies of the two states.
(f) Using a spreadsheet program, plot the energies of the three excited triplet states 

relative to the ground 3A2g state – on the horizontal axis, plot the energies as a 
function of ∆o/B, and on the vertical axis, plot energies in units of B. In other words, 
plot three functions: E(3T2g) – E(3A2g), E(3T1

A
g) – E(3A2g), and E(3T1

B
g) – E(3A2g).  Do 

the results look familiar?
(g) Extra Credit: The high-field wavefunctions, 3T1

A
g(t2
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 3) and 3T1
B
g(t2

4
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 4), are a 
combination of the atomic wavefunctions, Ψ(3F) and Ψ(3P): 

  

Ψ( 3T1g
A) = cPAΨ( 3P) + cFAΨ( 3F )     ;     Ψ( 3T1g

B ) = cFAΨ( 3P) − cPAΨ( 3F )

These are already constructed to be orthogonal and they must be normalized, 

cPA
2
+ cFA

2
= 1.

Find the relative 3F and 3P contributions to the high-field molecular states: |cPA/cFA|.



Relations Involving Coulomb and Exchange Integrals
p orbitals  
definitions

  

J0,0 = Jz ,z = Jx,x = J y, y

J1,1 = J−1,−1 = J−1,1 = 1 2( )(Jx,x + Jx, y )
J1,0 = J−1,0 = Jx, y = Jx,z = J y,z
K1,−1 = K−1,1 = 2Kx, y = Jx,x − Jx, y
K1,0 = K−1,0 = Kx, y = Kx,z = K y,z

 

d orbitals

  

J0,0 = J
z2 ,z2

J2,2 = J−2,−2 = J2,−2 = 1 2( )(Jxy,xy + J
x2 − y2 ,xy

)
J2,1 = J−2,−1 = J2,−1 = J−2,1 = Jxy,xz
J2,0 = J−2,0 = J

xy,z2

J1,1 = J−1,−1 = J1,−1 = 1 2( )(Jxz ,xz + Jxz , yz )
J1,0 = J−1,0 = J

xz ,z2

K1,−1 = 2Kxz , yz = Jxz ,xz − Jxz , yz
K2,−2 = 2K

xy,x2 − y2 = Jxy,xy − J
xy,x2 − y2

K2,1 = K−2,−1 = Kxy,xz − ∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ
x2 − y2 (2)dτ1dτ2

K2,−1 = K−2,1 = Kxy,xz + ∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ
x2 − y2 (2)dτ1dτ2

K2,0 = K−2,0 = K
xy,z2

K1,0 = K−1,0 = K
xz ,z2

Energies of real d orbital integrals in terms of Racah parameters

  

Jxy,xy = Jxz ,xz = J yz , yz = J
z2 ,z2 = J

x2 − y2 ,x2 − y2                      A+ 4B + 3C
Jxz , yz = Jxy, yz = Jxy,xz = J

x2 − y2 , yz
= J

x2 − y2 ,xz
                    A− 2B + C

J
xy,z2 = J

x2 − y2 ,z2                                                               A− 4B + C
J

yz ,z2 = J
xz ,z2                                                                    A+ 2B + C

J
x2 − y2 ,xy

                                                                          A+ 4B + C
Kxy, yz = Kxz , yz = Kxy,xz = K

x2 − y2 , yz
= K

x2 − y2 ,xz
        3B + C

K
xy,z2 = K

x2 − y2 ,z2                                                      4B + C
K

yz ,z2 = K
xz ,z2                                                           B + C

K
x2 − y2 ,xy

                                                           C
∫ϕxz (1)ϕxy (2) 1 r12( )ϕ yz (1)ϕ

x2 − y2 (2)dτ1dτ2        −3B

For 1st-row transition metals, Racah parameters B and C have typical ranges:  B ≈ 650 –1100 
cm–1, C ≈ 2400 – 5500 cm–1.  (State energy differences don’t involve A.)

  

Ji, j = ∫ϕ i
*(1)ϕ j

*(2) 1 r12( )ϕ i (1)ϕ j (2)dτ1dτ2;

Ki, j = ∫ϕ i
*(1)ϕ j

*(2) 1 r12( )ϕ i (2)ϕ j (1)dτ1dτ2



Energies of complex d orbital integrals in terms of Racah parameters

  

J0,0                                    
J2,2 = J−2,−2 = J2,−2           
J2,1 = J−2,−1 = J2,−1 = J−2,1

J2,0 = J−2,0                         
J1,1 = J−1,−1 = J1,−1             
J1,0 = J−1,0                          
K1,−1                                  
K2,−2                                  
K2,1 = K−2,−1                      
K2,−1 = K−2,1                     
K2,0 = K−2,0                        
K1,0 = K−1,0                        

                                  

A+ 4B + 3C
A+ 4B + 2C
A− 2B + C   
A− 4B + C    
 A+ B + 2C    
 A+ 2B + C    

6B + 2C      
C                 
6B + C       
C                 
4B + C        
B + C           

  

The "Slater-Condon parameters" are defined by

F k ≡ e2 r1
2

0

∞

∫ r2
2

0

∞

∫
r<

k

r>
k+1

Rnl (r1)
2

Rnl (r2 )
2

dr2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dr1   ;   
r<

k

r>
k+1

=

r1
k

r2
k+1

 if  r2 > r1

r2
k

r1
k+1

 if  r1 > r2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

and (in the d-shell):  F0 ≡ F 0  , F2 =
F 2

49
 , F4 =

F 4

441
The "Racah Parameters" are related to the Slater-Condon parameters by

A = F0 − 49F4

B = F2 − 5F4

C = 35F4




