Class 6.2 Acids and Bases

Friday, October 8 CHEM 462 T. Hughbanks

Table 8.3 From Jolly, "Modern Inorganic Chemistry" Aqueous pKa values of the binary hydrides of the nonmetals

CH ₄	NH ₃	H ₂ O	HF	
~ 44	39	15.74	3.15	
SiH ₄	PH ₃	H₂S	HCI	
~ 35	27	6.89	-6.3	
GeH ₄	AsH ₃	H ₂ Se	HBr	
25	≤ 23	3.7	-8.7	
		H ₂ Te	HI	
		2.6	-9.3	

 Acidic and Basic Oxides
 The oxides that one uses to form acids and bases in aqueous solution often have reactivity that reflects their acidic

Examples: Li₂O, CaO, and BaO react with water to form basic solutions and can react with acids directly to form salts. Likewise, SO₃, CO₂, and N₂O₅ form acidic aqueous solutions and can react directly with bases to give salts.

or basic character.

Oxides as Acid and Basic <u>Anhydrides</u>

Basic Oxides (usually "ionic")

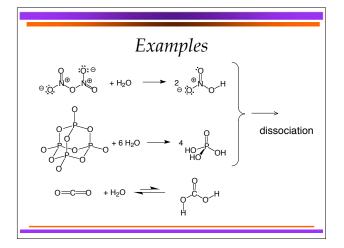
 $CaO + 2H_2O \longrightarrow Ca^{2+} + 2OH^-$, moderately strong base

$$[O^{2-}] + H_2O \longrightarrow 2OH^-$$
 K > 10²²

Alkali metal and alkaline earth oxides are basic (dissolve in acid).

Acidic Oxides (Acid Anhydrides)

element-oxygen (E–O) bond not broken on dissolution


either


an $\mathsf{E}-\mathsf{O}-\mathsf{E}$ group is hydrolyzed by water $\boldsymbol{\mathsf{or}}$

water is added across a double bond

Acidic Oxides not soluble in water will dissolve in basic aqueous solutions to produce salts

e.g. $As_2O_3 + 2NaOH(aq) \longrightarrow 2NaH_2AsO_3$ (Often seen for anhydrides of weaker acids.)

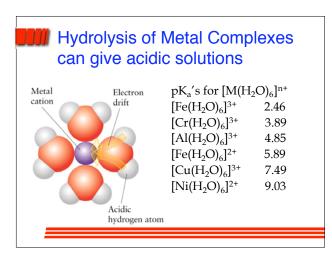
Amphoteric Oxides

Dissolve in acids or bases - if strong enough. E.g., BeO, SnO, certain forms of Al_2O_3

In strong <u>acids</u>: $ZnO + 2HCl(aq) \longrightarrow ZnCl_2(aq)$ $ZnO + 2HNO_3(aq) \longrightarrow Zn(OH_2)_6^{2+} + NO_3^{-1}$

In strong <u>base</u>: $ZnO + 2NaOH(aq) \longrightarrow 2Na^{+}(aq) + [Zn(OH_4)]^{2-}(aq)$

Lux-Flood Concept (Oxide Solids)


- Acid: Oxide ion acceptor
- Base: Oxide ion donor
 - A generalization that includes reactions between solids when water never gets involved. E.g.,

 $\begin{array}{l} \mathsf{CaO}+\mathsf{SiO}_2\to\mathsf{CaSiO}_3\\ 3\ \mathsf{Na}_2\mathsf{O}+\mathsf{P}_2\mathsf{O}_5\to\mathsf{2}\ \mathsf{Na}_3\mathsf{PO}_4\\ \mathsf{NaOH}+\mathsf{CO}_2\to\mathsf{NaHCO}_3 \end{array}$

Other Oxides

Many oxides (particularly of the transition metals) are difficult to classify as acidic or basic because redox chemistry is more important.

e.g. MnO₂ + 4HI (aq. conc.) \rightarrow Mn²⁺(*aq*) + I₂ + 2H₂O + 2 I⁻

Examples of Acids From Solvolyzed Metals

Aqua Acids (solvolysis) Al³⁺ solutions are acidic

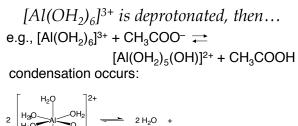
 $AICI_3(s) + H_2O \rightarrow AI^{3+}(aq) + CI^{-}(aq)$

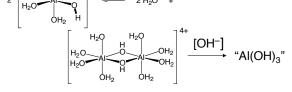
(w/sm. amts of water, HCl gas is evolved):

 $\begin{array}{rl} \text{AICI}_3 + \text{H}_2\text{O} \rightarrow & \text{``AI(OH)}_3 \\ & \rightarrow & \text{AICI}_2(\text{OH}) \cdot \text{nH}_2\text{O} \text{ complex} \\ & & \text{AICI}(\text{OH})_2 + \text{mH}_2\text{O} \end{array}$

Highly charged cations with small radii make for stronger acids:

[Fe(OH₂)₆]²⁺ fairly weak, [Fe(OH₂)₆]³⁺ is much stronger. r(Fe³⁺) < r(Fe²⁺), the smaller, more highly charged (more polarizing) cation withdraws more e⁻ density from coordinated water.


More than size is involved:


 $\label{eq:r(Al3+)} r(Al3+) < r(Fe^{3+}) \mbox{ ionic radii, but } [Fe(OH_2)_6]^{3+} \\ \mbox{ is stronger than } [Al(OH_2)_6]^{3+} \\ \mbox{ }$

Fe^{III}–O bonding probably more covalent (smaller electronegativity diff. than Al/O).

Acid-Base behavior of Metal Ions not so simple...

Ions like Al³⁺ and Fe³⁺ are often used as examples of cations that form acidic aqueous solutions, however acid-base equilibria for the "ions" are not simple. [Compare: CICH₂COOH $pK_a = 2.85$ — has a "normal" titration curve (pH vs. added base). What does it look like?.] An acidic [Al(OH₂)₆]³⁺ solution will not titrate this way. Why?

<u>Transition Metals in High</u> <u>Ox. States: Acidic</u>

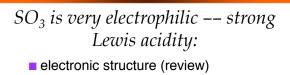
Metals in very high oxidation states form strong, largely covalent, bonds with oxygen

- —> weakens O-H bonds!
- e.g. CrO_4^{2-} weak conjugate base of chromic acid

+
$$H_3O^+ \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & cr & 0 & cr \\ 0 & 0 & 0 \end{bmatrix}^{2^-}$$
 dichromate

e.g. MnO₄⁻ very weak conjugate base of permanganic acid (both are powerful <u>oxidants</u>)

Lewis acids and Bases (orbital viewpoint)


- (1) Metal cations (Lewis acids) & Ligands (Lewis bases)
- (2) p-block Lewis Acids: Incomplete octets e.g. $B(CH_3)_3$, $AICI_3$
- Review of bonding
- Lewis acidity Trend for BX₃ (X = F, Cl, Br)?

AlCl₃: exists as Al₂Cl₆ in gas phase

Familiar application: Friedel-Crafts acylationTo be discussed later: Chloroaluminate based lonic Liquids

Molecules with low-lying LUMOs

- E.g. (review CO₂ and SO₃ examples).
 SO₂: can function as a Lewis acid or Lewis base:
- SO₂ as an acid (involvement of LUMO)
- SO₂ as a Lewis base use of Slocalized (HOMO) or O-localized lonepairs

Oleum: formed by adding SO₃ to H₂SO₄.