Selections from Chapter 16 Carbonyls, Organometallics, ...

CHEM 462 Monday, November 29 T. Hughbanks

18 e "rule" (a guideline, actually)

We now consider the class of T.M. compounds where most of the bound ligands are carbonyls, phosphines, arsines, stibines, NO, bipy, etc...

- The number of ligand electrons available for bonding <u>plus</u> the number electrons on the metal in such complexes adds to 18.
- Simple mononuclear carbonyl complexes:

	nonacieu	r Carbon	ly 15
V(CO) ₆	Cr(CO) ₆	Fe(CO) ₅ yellow liq.	Ni(CO) ₄
blue-black solid,	Mo(CO) ₆	Ru(CO) ₅	colorless liquid, b.p. 43 °C
paramag. (1e ⁻),	W(CO) ₆	Os(CO) ₅	0.p. 15 C
yellow- orange in solution	colorless crystals	colorless liquids	Pd & Pt analogs not stable

Binuclear & Polynuclear Carbonyls

- Mn₂(CO)₁₀, Tc₂(CO)₁₀, Re₂(CO)₁₀
- ◆ Co₂(CO)₈
- ♦ Fe₂(CO)₉, Ru₂(CO)₉, Os₂(CO)₉ (last two not very stable)
- $(Fe,Ru,Os)_3(CO)_{12}$
- $(Co,Rh,Ir)_4(CO)_{12}$
- Issues: bridging, semibridging, and side-on carbonyls, fluxionality

Vibrational Spectra

- CO stretching frequencies are important in characterization of carbonyl-containing compounds relatively intense and sensitive to bonding and charge variations.
- ♦ Free CO: 2170 cm⁻¹; Some trends (cm⁻¹): Mn(CO)₆⁺ (2090); Cr(CO)₆ (2000); V(CO)₆⁻ (1860) Cr(dien)(CO)₃(1900, 1760)
 terminal COs (neutral): 1850-2125 cm⁻¹
 bridging COs (neutral): 1700-1860 cm⁻¹

Preparation of Metal Carbonyls

- <u>Direct Reaction</u> (Ni; Co & Fe at high temp): Ni (finely divided) + 4 CO (g) → Ni(CO)₄(g) (25 °C) Fe (finely divided) + 5 CO (g) → Fe(CO)₅(g) (200 bar, > 150 °C)
- Most other carbonyl compounds prepared via <u>reduction</u>: MX_n + {Na, Al, Mg, R₃Al, Cu} → M(CO)_n + {NaX, AlX₃, MgX₂, CuX} The course of these reactions is not well-known, may involve reduction to particulate metals
- ♦ Sometimes CO itself is the reducing agent: $\begin{array}{c} CoCO_3 + 2H_2 + 8 \text{ CO} \to Co_2(CO)_8 + 2CO_2 + 2 \text{ H}_2O \\ 250-300 \text{ atm}, 150 \ ^{\circ}C \\ Re_2O_7 + 17 \text{ CO} \to Re_2(CO)_{10} + 7 \text{ CO}_2 \text{ (g)} \quad \sim 300 \text{ atm}, \sim 300 \ ^{\circ}C \end{array}$
 - $OsO_4 + 9 CO \rightarrow Os(CO)_5 + 4 CO_2 (g) \sim 350 atm, \sim 250^{\circ}C$

CO analogs

- ◆ <u>Isocyanides</u> (isonitriles): :C≡N–R
 - Stronger σ donor, about as good a π acceptor as CO Direct analogs, e.g., Cr(CNPh)₆, Ni(CNPh)₄

Since CNR are better σ donors, isocyanide complexes can be made where π -backbonding is less favorable, eg., $[Fe(CNR)_6]^{2+}$, $[Ag(CNR)_4]^+$

 ◆ <u>Dinitrogen</u>: weaker as a σ donor and π acceptor Complexes can be prepared (under strongly reducing conditions): MoCl₅ + 2N₂ + 4 PR₃ + Na/Hg → *trans*-Mo(N₂)(PR₃)₄ + 5 NaCl (in THF)

Nitrosyls

- Linear nitrosyls are similar to linear carbonyls, except they are categorized as 3e⁻ donors (if counted as neutral!).
- NO π-backbonding very strong (stronger than CO)
- ◆ Longest known isoelectronic series of neutrals: Ni(CO)₄, Co(CO)₃(NO), Fe(CO)₂(NO)₂, Mn(CO)(NO)₃, Cr(NO)₄ (only known pure nitrosyl)
- ◆ bent nitrosyls: neutral called a "one-e⁻ donor"

Nitrosyls: e⁻ counting pitfalls

- An alternative to the odd-e counting assignment: if linear, call it "NO⁺", if bent call it "NO⁻" - then it is always a 2 e⁻ donor.
- Why bother? Examples

Structure of Co(NH₃)₅(NO)?

Ox. state and magnetism of Na₂[Fe(CN)₅NO]? [note: *Jolly* calls this

sodium pentacyanonitrosylferrate(III)]