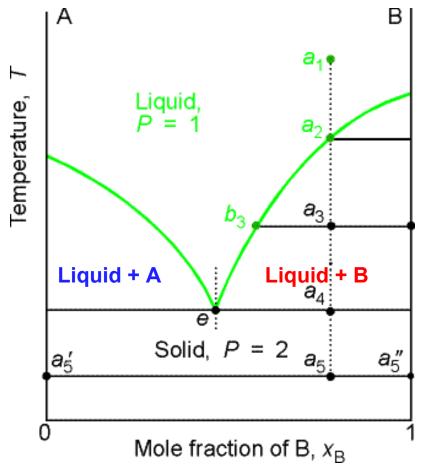

Liquid-Solid Phase Diagrams


Solid and liquid phases can be present below the boiling point (e.g., immiscible pair of metals right up to their melting points (As and Bi)

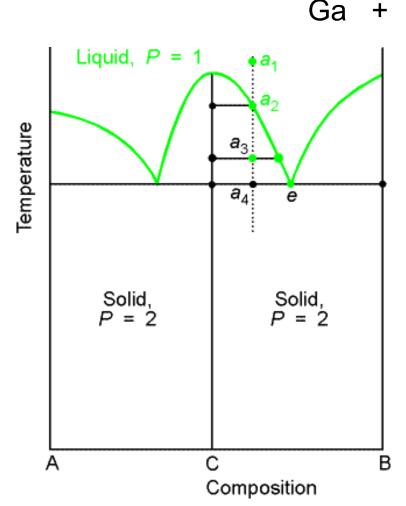
Composition at e is known as the eutectic composition (easily melted), and the horizontal line at e is known as T_e , the eutectic temperature.

Eutectics

Liquid with **eutectic composition** freezes at a single temperature, T_e , without depositing A or B in advance of the freezing point Solid with eutectic composition melts, without any composition change, at the lowest temperature of any mixture

Solutions to the **left of e deposit A as** they cool.

Solutions to the right of e deposit B as they cool.


Only the eutectic solidifies at a single temperature (F' = 0 when C = 2 and P = 3), no other components unloaded

Examples:

- Solder, 67% tin and 33% lead, m.p. 183°C
- 23% NaCl, 77% H₂O m.p. -21.1°C; salt added to ice on a road (isothermal) mixture melts at T > -21.1°C

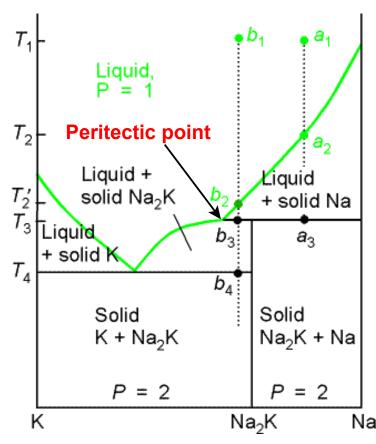
Reacting Systems

Many binary systems react to produce different compounds - one important example is the formation of GaAs (gallium arsenide) which is very important for the manufacturing of III/V semiconductors:

As *≠* GaAs

System prepared with A (i.e., Ga) and excess of B (i.e., As) consists of C (i.e., GaAs) and unreacted B (i.e., As).

The binary B,C system forms a eutectic


The important part of the phase diagram are the compositions of equal amounts of A and B (x = 0.5), pure A and pure B

Solid deposited along the cooling isopleth "a" is compound C

Below a_4 there are two solid phases, with some C and some B

Incongruent Melting

Sometimes component C is not stable as a liquid (e.g., alloy Na₂K)

- (1) a₁ → a₂ Some Na deposited, liquid richer in K
- (2) $a_2 \rightarrow a_3$ Just below a_3 , solid sample, with solid Na and solid Na₂K
- (1) $b_1 \rightarrow b_2$ No change until Na begins to deposit at b_2
- (2) b₂ → b₃ Solid Na deposits, but reaction happens to make Na₂K (K atoms diffuse into solid Na)

Here, liquid Na/K in eqb. with Na₂K solid (3) $b_3 \rightarrow b_4$ Amount of solid increases until b_4 , liquid hits eutectic point, now two phase solid is formed

Incongruent melting: The temperature at which one solid phase transforms into another solid phase plus a liquid phase both of different chemical compositions than the original substance (i.e., the **peritectic temperature**, T_p).