Chom 167	<u>Sc</u>	ores		
Exam 2 - Fall 2002	1	/16		
	2	/8		
Name	3	/6		
	4	/14		
I.D. #	5	/12		
	6	/6		
PHYSICAL CONSTANTS/CONVERSION FACTORS	7	/6		
Speed of light = 3.00×10^8 m/s 0 °C = 273 K Planck's const. = 6.63×10^{-34} J·s 1.00 atm = 760 torr	8	/18		
Avagadro's Number = 6.02×10^{23} 1 inch = 2.54 cmElectron charge = 1.602×10^{-19} C1.00 lb = 454 g	9	_/14		
Faraday's const. = 96487 C mol ⁻¹ (e ⁻) 1 Å = 1.0×10^{-8} cm Gas const (B) = 0.0821 L atm mol ⁻¹ K ⁻¹ 1 eV = 1.602×10^{-19} J	Tot.	/100		
$= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1} $				
$= 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \text{ Mass of } p = 1.0073 \text{ amu}$ $= 1.987 \text{ cal mol}^{-1} \text{ K}^{-1} = 1.6726 \times 10^{-27} \text{ kg}$				
Mass of e = 0.00055 amu = 9.1094 × 10 ⁻³¹ kg = 1.6749 × 10 ⁻²⁷ kg				
Pauling Electronegativity — > 2.1 1				
Atomic molar mass (Atomic	c weight)			
		He		
	3.5 8 4.0 9	10 No		
6.941 9.012 1.0 11 1.2 1.5 1.3 1.4 1.5 13 1.5 13	16.00 19.00 2.5 16 3.0 17	20.18 18		
$\begin{array}{c c} Na & Mg \\ \hline 22.99 & 24.30 \end{array} \qquad \qquad All & Si & P \\ \hline 30.97 & 24.30 & 24.30 \end{array}$	S Cl 32.07 35.45	Ar 39.95		
$\begin{array}{c} \mathbf{K} \\ $		Kr		
0.10 47.00 47.00 47.00 47.00 0.00 0.00 0.00	2.1 52 2.5 53	54 Xe		
85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 0.8 55 1.0 56 1.1 57 1.3 74 1.7 75 1.9 76 1.9 77 1.8 78 1.9 79 1.7 80 1.6 81 1.7 82 1.8 83	127.6 126.9 1.9 84 2.1 85	131.3 86		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Po At (210)	Rn		
$\begin{bmatrix} F_{1} \\ F_{2} \\ F_$				
	.1 69 1.0 70 1	1.2 71		
▼ Lantmanide series UC FI INO FIII SIII EU GO ID UV HO EF 140.1 140.9 144.2 (145) 150.4 152.0 157.2 158.9 162.5 164.9 167.3	1 I I I I I D 168.9 173.0	LU 175.0		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$.3 101 1.3 102 1 MC NO (258) (259)	.5 103 Lr (260)		

Read questions carefully & give answers in the blanks provided

- (1) (16 points) Give products for all the reactions below. If no reaction occurs, write "NR" do not leave it blank.
 - (a) $2 \text{ HF}(l) + \text{PF}_5 \rightleftharpoons$ (write the species present in this acid-base equilibrium)

(b)
$$N_2O_5(g) + excess H_2O \rightarrow$$

(c) Li₃N is added to an acetic acid solution in $NH_3(l) \rightarrow$

(d)
$$\operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{Ag}(\operatorname{s}) \rightarrow$$

- (e) $Cu_2S(s) + O_2(air) \rightarrow$ (roasting at high temperature)
- (f) SO₃ + excess H₂O \rightarrow
- (g) NOF + $ClF_5 \rightleftharpoons$ (write the species present in this acid-base equilibrium)
- (h) Al(OH)₃ (hydrous) + excess OH \rightarrow
- (2) (8 points) Using hard-soft concepts, predict which of the following should have an equilibrium constant greater than 1. Unless otherwise stated, assume these are measured at 25 °C in the gas phase or hydrocarbon solutions.
 - (a) $Et_3PBBr_3 + Et_3PBF_3 \rightleftharpoons Et_3PBF_3 + Et_3PBBr_3$
 - (b) $SO_2 + (C_6H_5)_3P:HOC(CH_3)_3 \rightleftharpoons (C_6H_5)_3P:SO_2 + HOC(CH_3)_3$
 - (c) $CH_3HgI + HCl \rightleftharpoons CH_3HgCl + HI$
 - (d) $[AgCl_2]^-(aq) + 2 CN^-(aq) \rightleftharpoons [Ag(CN)_2]^-(aq) + 2 Cl^-(aq)$
- (3) (6 points) For each the following sets, put the compounds in order.

(a) HSO_4^- , H_3O^+ , H_4SiO_4 , NH_3 , HSO_3F increasing Brønsted <u>acidity</u> in water.

(b) S^{2-} , O^{2-} , F^- , Cl^- , I^-

increasing Brønsted basicity in water.

(4) (a) (14 pts) Dilute hydrogen peroxide (H₂O₂) solutions are used to kill anaerobic bacteria in fresh wounds. The iron in blood acts as a catalyst to produce the characteristic gas evolution ("fizzing") that occurs in this process. Write an equation for the reaction that takes place and compute ΔG° for that reaction.

- (5) (12 pts) Phosphorous and boric acids have analogous compositions: H_3EO_3 (E = B, P). However, boric acid is monobasic with $pK_a = 9.1$. Phosphorous acid is dibasic with $pK_{a1} = 1.8$ and $pK_{a2} = 6.6$.
- (a) With appropriate equations, show how boric acid, $B(OH)_3$, acts as a Lewis acid and show what species acts as a Brønsted acid ($pK_a = 9.1$) in aqueous boric acid solutions. Show the structures of all relevant species in your equations.

(b) Show how the measured pK_a values of phosphorous acid are consistent with its structure. (The Pauling/Bell equation is: $pK_a \approx 8 - 5p$).

(6) (6 pts) Give a brief, but informative, explanation for the fact that $FeCl_4^-$ is formed when $FeCl_3$ is dissolved in $OP(OCH_2CH_3)_3$.

(7) (6 pts) The heats of reaction of B(CH₃)₃ with NH₃, CH₃NH₂, (CH₃)₂NH, and (CH₃)₃N are -57.7, -73.6, -80.8, -73.6 kJ/mol, respectively. Explain the trend(s) in this data.

(8) (18 pts) (a) Gold is a noble metal that is oxidized only with difficulty (which is why gold is a practical coinage metal). Cyanide is used in gold extraction from ores. Given the standard potentials for Au^I reduction,

$$Au^{+} + e^{-} \rightarrow Au \qquad E^{\circ} = +1.68 \text{ V}$$
$$[Au(CN)_{2}]^{-}(aq) + e^{-} \rightarrow Au + 2CN^{-}(aq) \qquad E^{\circ} = -0.6 \text{ V}$$

Compute the complex formation constant for the reaction:

 $\operatorname{Au}^{+}(\operatorname{aq}) + 2\operatorname{CN}^{-}(\operatorname{aq}) \rightleftharpoons [\operatorname{Au}(\operatorname{CN})_{2}]^{-}(\operatorname{aq})$

(9) (14 points) In class, the rates of outer sphere electron transfer reactions were discussed. One of the degenerate (self-exchange) reactions,

$$[Co(H_2O)_6]^{3+} + [Co(H_2O)_6]^{2+} \rightleftharpoons [Co(H_2O)_6]^{2+} + [Co(H_2O)_6]^{3+}$$

is fairly fast (~5 M⁻¹ s⁻¹), even though the Co^{III} complex is low-spin and the Co^{II} complex is high-spin. Furthermore, the difference between the Co^{III}–O and the Co^{III}–O bond lengths is large (~ 0.15 Å). Try to provide an explanation for this seemingly anomalous behavior! *Hints: (1) H₂O is a weak field ligand, so the low-spin state for* $[Co(H_2O)_6]^{3+}$ *is itself somewhat "anomalous". (2) The reaction pathway in this case is thought to be a little more complicated than the cases discussed in class.*

Standard Reduction Potentials, 298K

The concentration of each aqueous solution is $1 \mod dm^{-3}$ and the pressure of a gaseous component is 1 bar (10⁵ Pa). (Changing the standard pressure to 1 atm (101 300 Pa) makes no difference to the values of E° at this level of accuracy.) Each half-cell listed contains the specified solution species at a concentration of $1 \mod dm^{-3}$; where the half-cell contains $[OH]^-$, the value of E° refers to $[OH^-] = 1 \mod dm^{-3}$, hence the notation $E^{\circ}_{[OH^-]=1}$ (see Box 7.1).

Reduction half-equation	$\boldsymbol{E^{o}}$ or $\boldsymbol{E^{o}}_{[OH]} = 1 / \mathbf{V}$
$Li^+(aq) + e^- \rightleftharpoons Li(s)$	- 3.04
$Cs^+(aq) + e^- \rightleftharpoons Cs(s)$	- 3.03
$Rb^+(aq) + e^- = Rb(s)$	- 2.98
$\mathbf{K}^+(\mathbf{aq}) + \mathbf{e}^- \rightleftharpoons \mathbf{K}(\mathbf{s})$	-2.93
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$Na^+(aq) + e^- \Longrightarrow Na(s)$	-2.71
$La^{3+}(aq) + 3e^{-} \rightleftharpoons La(s)$	-2.38
$Mg^{2+}(aq) + 2e^{-} \Longrightarrow Mg(s)$	-2.37
$Y^{3+}(aq) + 3e^{-} \rightleftharpoons Y(s)$	-2.37
$Sc^{3+}(aq) + 3e^{-} \Longrightarrow Sc(s)$	-2.03
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.66
$[HPO_3]^{2-} + 2H_2O + 2e^{-} = [H_2PO_2]^{-} + 3[OH]^{-}$	-1.65
$\mathrm{Ti}^{2+}(\mathrm{aq}) + 2\mathbf{e}^{-} = \mathrm{Ti}(\mathrm{s})$	-1.63
$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.19
$\mathbf{V}^{2+}(\mathbf{aq}) + 2\mathbf{e}^{-} = \mathbf{V}(\mathbf{s})$	-1.18
$Te(s) + 2e^{-} = Te^{2-}(aq)$	-1.14
$2[SO_3]^{2-} + 2H_2O + 2e^{-} \rightleftharpoons 4[OH]^{-} + [S_2O_4]^{2-}$	-1.12
$[SO_4]^{2-}(aq) + H_2O(l) + 2e^- = [SO_3]^{2-}(aq) + 2[OH]^-(aq)$	-0.93
$\operatorname{Se}(s) + 2e^- \rightleftharpoons \operatorname{Se}^{2-}(\operatorname{aq})$	-0.92
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Cr}(s)$	-0.91
$2[NO_3]^-(aq) + 2H_2O(l) + 2e^- \rightleftharpoons N_2O_4(g) + 4[OH]^-(aq)$	-0.85
$2H_2O(1) + 2e^- = H_2(g) + 2[OH]^-(aq)$	-0.82
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightleftharpoons \operatorname{Cr}(s)$	-0.74
$S(s) + 2e^{-} \rightleftharpoons S^{2-}(aq)$	-0.48
$[NO_2]^-(aq) + H_2O(l) + e^- \rightleftharpoons NO(g) + 2[OH]^-(aq)$	-0.46
$Fe^{2+}(aq) + 2e^{-} \Longrightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightleftharpoons \operatorname{Cr}^{2+}(\operatorname{aq})$	-0.41
$\operatorname{Ti}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightleftharpoons \operatorname{Ti}^{2+}(\mathrm{aq})$	-0.37
$PbSO_4(s) + 2e^- \rightleftharpoons Pb(s) + [SO_4]^{2-}(aq)$	-0.36
$Tl^+(aq) + e^- = Tl(s)$	-0.34
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Co}(s)$	-0.28
$H_3PO_4(aq) + 2H^+(aq) + 2e^- = H_3PO_3(aq) + H_2O(l)$	-0.28
$\mathbf{V}^{3+}(\mathbf{aq}) + \mathbf{e}^{-} \rightleftharpoons \mathbf{V}^{2+}(\mathbf{aq})$	-0.26
$Ni^{2+}(aq) + 2e^- \Rightarrow Ni(s)$	-0.25
$2[SO_4]^{2^-} + 4H^+ + 2e^- \rightleftharpoons [S_2O_6]^{2^-} + 2H_2O$	-0.22

Reduction half-equation	$E^{\mathbf{o}}$ or $E^{\mathbf{o}}_{[\mathbf{OH}^{-}]=1}/V$
$O_2 + 2H_2O + 2e^- \rightleftharpoons H_2O_2 + 2[OH]^-$	-0.15
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$Fe^{3+}(aq) + 3e^{-} \rightleftharpoons Fe(s)$	-0.04
$2H^+(aq, 1 \mod dm^{-3}) + 2e^- \rightleftharpoons H_2(g, 1 \ker)$	0
$[NO_3]^-(aq) + H_2O(1) + 2e^- \rightleftharpoons [NO_2]^-(aq) + 2[OH]^-(aq)$	+0.01
$[S_4O_6]^{2^-}(aq) + 2e^- \rightleftharpoons 2[S_2O_3]^{2^-}(aq)$	+0.08
$S(s) + 2H^+(aq) + 2e^- \rightleftharpoons H_2S(aq)$	+0.14
$2[NO_2]^{-}(aq) + 3H_2O(l) + 4e^{-} \rightleftharpoons N_2O(g) + 6[OH]^{-}(aq)$	+0.15
$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$	+0.15
$\operatorname{Sn}^{+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{+}(\operatorname{aq})$	+0.15
$[SO_4]^{2^-}(aq) + 4H^+(aq) + 2e^- = H_2SO_3(aq) + H_2O(1)$	+0.17
$\operatorname{AgCl}(s) + e^{-} \rightleftharpoons \operatorname{Ag}(s) + \operatorname{Cl}^{-}(aq)$	+0.22
$Cu^{-+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$[VO]^{-+}(aq) + 2H^{+}(aq) + e^{-} = V^{++}(aq) + H_2O(l)$	+0.34
$[CIO_4]$ $(aq) + H_2O(1) + 2e^- = [CIO_3]^-(aq) + 2[OH]^-(aq)$	+0.36
$[Fe(CN)_6]^{-1}(aq) + e^{-1} \rightleftharpoons [Fe(CN)_6]^{-1}(aq)$	+0.36
$O_2(g) + 2H_2O(1) + 4e \rightleftharpoons 4[OH] (aq)$	+0.40
$\operatorname{Cu}^{\circ}(\operatorname{aq}) + \operatorname{e}^{\circ} = \operatorname{Cu}(\operatorname{s})$	+0.52
$I_2(aq) + 2e = 2I (aq)$ $I_2(aq) + 2U^{\dagger}(aq) + 2v^{-} \rightarrow UA = 0 (aq) + 2U = 0(1)$	+0.54
$H_3ASO_4(aq) + 2H_1(aq) + 2e = HASO_2(aq) + 2H_2O(1)$ $(M_2O_1)^{-1}(aq) + a^{-1} \rightarrow (M_2O_2)^{-1}(aq)$	+0.56
$[MnO_4] (aq) + e^- = [MnO_4]^- (aq)$ $[MnO_4]^- (aq) + 2H_2 \circ a^- \Rightarrow MnO_2 \circ a^+ + 4[OH_2]^- (aq)$	+0.56
$[MnO_4]$ $(aq) + 2H_2O(aq) + 3e^{-2} = MnO_2(s) + 4[OH]$ (aq)	+0.59
$[B(O_3) + (aq) + SH_2O(1) + 6c \rightarrow Bi (aq) + 6[OH] (aq)$	+0.81
$O_2(\mathbf{g}) + 2\mathbf{n} (\mathbf{aq}) + 2\mathbf{e} \leftarrow \mathbf{n}_2O_2(\mathbf{aq})$ $[\mathbf{Pr}\mathbf{O}]^-(\mathbf{aq}) + \mathbf{H} \mathbf{O}(1) + 2\mathbf{e}^- \rightarrow \mathbf{Pr}^-(\mathbf{aq}) + 2[\mathbf{OH}]^-(\mathbf{aq})$	+0.70
$[BO] (aq) + H_2O(1) + 2e^{-2} \rightarrow Br (aq) + 2 OH (aq)$	+0.76
$A a^+(na) + a^- = A a(s)$	+0.77
$[C[O]^{-}(aq) + H_{*}O(1) + 2e^{-} \Rightarrow C[^{-}(aq) + 2[OH]^{-}(aq)$	+0.80
$2HNO_{1}(aq) + 4H^{+}(aq) + 4e^{-1} \implies H_{1}N_{2}O_{1}(aq) + 2H_{2}O(1)$	+0.84
$[NO_{3}]^{*}(aq) + 3H^{*}(aq) + 2e^{-} \Rightarrow HNO_{3}(aq) + H_{3}O(l)$	+0.00
$Pd^{2+} + 2e^{-} \rightleftharpoons Pd$	+0.95
$[NO_3]^-(ag) + 4H^+(ag) + 3e^+ \Rightarrow NO(g) + 2H_3O(l)$	+0.96
$HNO_{3}(aq) + H^{+}(aq) + e^{-} \rightleftharpoons NO(q) + H_{3}O(l)$	+0.98
$[VO_3]^+(aq) + 2H^+(aq) + e^- \Rightarrow [VO]^{2+}(aq) + H_3O(1)$	+0.99
$[Fe(bpy)_{3}]^{3+}(aq) + e^{-} \rightleftharpoons [Fe(bpy)_{3}]^{2+}(aq)$	+1.03
$[IO_1]^-(aq) + 6H^+(aq) + 6e^- \rightleftharpoons I^-(aq) + 3H_2O(1)$	+1.09
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.09
$[Fe(phen)_3]^{3+}(aq) + e^- \rightleftharpoons [Fe(phen)_3]^{2+}(aq)$	+1.12
$Pt^{2+} + 2e^- \Rightarrow Pt$	+1.18
$2[IO_3]^-(aq) + 12H^+(aq) + 10e^- \rightleftharpoons I_2(aq) + 6H_3O(1)$	+1.20
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+1.23
$MnO_2(s) + 4H^+(aq) + 2e^- = Mn^{2+}(aq) + 2H_2O$	+1.23
$Tl^{3+}(aq) + 2e^{-} \rightleftharpoons Tl^{+}(aq)$	+1.25
$2HNO_2(aq) + 4H^+(aq) + 4e^- \Rightarrow N_2O(g) + 3H_2O(l)$	+1.30
$[Cr_2O_7]^{2-}(aq) + 14H^+(aq) + 6e^- = 2Cr^{3+}(aq) + 7H_2O(1)$	+1.33
$Cl_2(aq) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$2[ClO_4]^{-}(aq) + 16H^{+}(aq) + 14e^{-} \rightleftharpoons Cl_2(aq) + 8H_2O(l)$	+1.39
$[\operatorname{ClO}_4]^-(\operatorname{aq}) + 8\operatorname{H}^+(\operatorname{aq}) + 8\operatorname{e}^- \rightleftharpoons \operatorname{Cl}^-(\operatorname{aq}) + 4\operatorname{H}_2\operatorname{O}(\operatorname{l})$	+1.39
$[\operatorname{BrO}_3]^-(\operatorname{aq}) + 6\operatorname{H}^+(\operatorname{aq}) + 6\operatorname{e}^- \rightleftharpoons \operatorname{Br}^-(\operatorname{aq}) + 3\operatorname{H}_2\operatorname{O}(\operatorname{I})$	+1.42
$[ClO_3]^-(aq) + 6H^+(aq) + 6e^- = Cl^-(aq) + 3H_2O(l)$	+1.45
$2[ClO_3]^{-}(aq) + 12H^{+}(aq) + 10e^{-} \rightleftharpoons Cl_2(aq) + 6H_2O(l)$	+1.47

Reduction half-equation	$\boldsymbol{E}^{\mathbf{o}}$ or $\boldsymbol{E}^{\mathbf{o}}_{[\mathbf{OH}^+]=1}/\mathbf{V}$
$2[BrO_3]^-(aq) + 12H^+(aq) + 10e^- \Rightarrow Br_2(aq) + 6H_2O(l)$	+1.48
$HOCl(aq) + H^{+}(aq) + 2e^{-} \rightleftharpoons Cl^{-}(aq) + H_2O(l)$	+1.48
$[MnO_4]^-(aq) + 8H^+(aq) + 5e^- \implies Mn^{2+}(aq) + 4H_2O(1)$	+1.51
$Mn^{3+}(aq) + e^- \rightleftharpoons Mn^{2+}(aq)$	+1.54
$2\text{HOCl}(aq) + 2\text{H}^+(aq) + 2e^- \rightleftharpoons \text{Cl}_2(aq) + 2\text{H}_2\text{O}(l)$	+1.61
$[MnO_4]^-(aq) + 4H^+(aq) + 3e^- \rightleftharpoons MnO_2(s) + 2H_2O(l)$	+1.69
$PbO_2(s) + 4H^+(aq) + [SO_4]^{2-}(aq) + 2e^- = PbSO_4(s) + 2H_2O(l)$	+1.69
$Ce^{4+}(aq) + e^{-} = Ce^{3+}(aq)$	+1.72
$H_2O_2(aq) + 2H^+(aq) + 2e^- = 2H_2O(1)$	+1.78
$\operatorname{Co}^{3+}(\operatorname{aq}) + \mathbf{e}^- \rightleftharpoons \operatorname{Co}^{2+}(\operatorname{aq})$	+1.92
$[S_2O_8]^{2-}(aq) + 2e^- = 2[SO_4]^{2-}(aq)$	+2.01
$XeO_3(aq) + 6H^+(aq) + 6e^- \Rightarrow Xe(g) + 3H_2O(l)$	+2.10
$[FeO_4]^{2^-} + 8H^+ + 3e^- \rightleftharpoons Fe^{3+} + 4H_2O$	+2.20
$H_4XeO_6(aq) + 2H^+(aq) + 2e^- \Rightarrow XeO_3(aq) + 3H_2O(l)$	+2.42
$F_2(aq) + 2e^- = 2F^-(aq)$	+2.87