Class 6.3 Acids and Bases

CHEM 102H T. Hughbanks

Hydrolysis of Salts made from Weak Acids or Weak Bases

- When salts like NaCl or KNO₃ are dissolved in water, the pH is not much affected. But when NaCN or NH₄Cl are dissolved, the pH <u>is</u> changed. Why?
- CN⁻ is a base and NH₄⁺ is an acid:

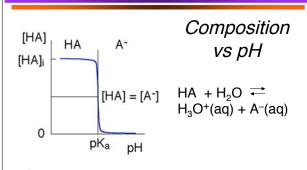
$$CN^{-}(aq) + H_2O \rightleftharpoons HCN(aq) + OH^{-}(aq)$$

 $NH_4^+(aq) + H_2O \rightleftharpoons NH_3(aq) + H_3O^+(aq)$

Hydrolysis of Salts - Example

■ For NH₃, pK_b = 4.74. What is the pH of a 10⁻² M solution of NH₄Cl?

TABLE 10.3 Acid name	SOLVENT	LEVELING	Y STRENGTH Name	
Strong acid Very		y weak base		
hydroiodic acid	HI	1-	iodide ion	
perchloric acid	HCIO ₄	CIO ₄ =	perchlorate ion	
hydrobromic acid	LIDe	Dv -	hromide ion	
hydrochloric acid	No Acids Stronger than H ₃ O ⁺ loride ion			
sulfuric acid	NO ACIGO OII	onger man m	drogen sulfate ion	
chloric acid	HCIO ₃	CIO3 -	chlorate ion	
nitric acid	HNO ₃	NO3-	nitrate ion	
hydronium ion	H ₃ O+	H ₂ O		
hydrogen sulfate ion	HSO ₄ -	5042-	sulfate ion	
hydrofluoric acid	HF	F-	fluoride ion	
nitrous acid	HNO ₂	NO ₂ =	nitrite ion	
acetic acid	CH3COOH	CH ₃ CO ₂ -	acetate ion	
carbonic acid	H ₂ CO ₃	HCO3 =	hydrogen carbonate ior	
hydrosulfuric acid	H ₂ S	HS-	hydrogen sulfide ion	
ammonium ion	NH ₄ +	NH ₃	ammonia	
hydrocyanic acid	HCN	CN-	cyanide ion	
hydrogen carbonate ion		CO3 ² -	carbonate ion	
methylammonium ion	CH ₃ NH ₃ +	CH ₃ NH ₂	methylamine	
Hater -		OH-	hydroxide ion ———	
ammonia	NH3	NH ₂ =	amide ion	
hydrogen			hydride ion	
	No Bases Str	ronger than Ol		
hydroxide ion	OH	0-	oxide ion	
Very weak acid		S	Strong base	


Composition vs pH

$$HA + H_2O \Rightarrow H_3O^+(aq) + A^-(aq)$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]};$$

when HA is half deprotonated,

$$[HA] = [A^-] \Rightarrow pH = pK_a$$

■ Composition changes dramatically when pH is close to the pK_a of the acid.

Polyprotic Acids

As we have seen, several common acids can potentially donate more than one proton. Sulfuric (H₂SO₄) and phosphoric (H₃PO₄) acids are particularly prominent examples:

$$H_2SO_4$$
: $pK_{a1} < 0$; $pK_{a1} = 1.92$

$$H_3PO_4$$
: $pK_{a1} = 2.12$; $pK_{a2} = 7.21$; $pK_{a3} = 12.68$

What are the concentrations of all species in a 0.1 M phosphoric acid solution?

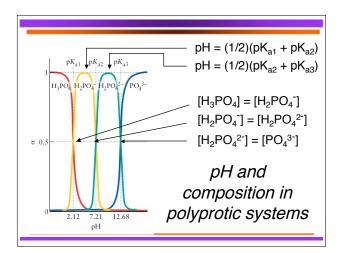
Features of Polyprotic Acids

 H_3PO_4 is a representative example: $pK_{a1} = 2.12$; $pK_{a2} = 7.21$; $pK_{a3} = 12.68$

At what pH are the concentrations of H_3PO_4 and $H_2PO_4^-$ equal?

At that pH, what the concentrations of $HPO_4^{2^-}$ and $PO_4^{3^-}$?

Tough type to answer directly: What is the pH of a $H_2PO_4^-$ or $HPO_4^{2^-}$ salt solution? (e.g., K_2HPO_4 or K_2PO_4 solution)


Easier: what's the pH when $[H_2PO_4^-] = [PO_4^3]$?

$$K_{a2} = \frac{[{\rm H_3O^+}][{\rm HPO_4}^{2^-}]}{[{\rm H_2PO_4}^{-1}]}; \ K_{a3} = \frac{[{\rm H_3O^+}][{\rm PO_4}^{3^-}]}{[{\rm HPO_4}^{2^-}]}$$

when
$$[H_2PO_4^-] = [PO_4^{3-}]$$
.

$$\frac{[{\rm H_3O^+}][{\rm HPO_4^{2^-}}]}{K_{a2}} = K_{a3} \frac{[{\rm HPO_4^{2^-}}]}{[{\rm H_3O^+}]} \ \Rightarrow \ {\rm p}H = \ \frac{1}{2} \big({\rm p}K_{a2} + {\rm p}K_{a3}\big)$$

But at this pH, $[HPO_4^{2-}] >> [H_2PO_4^{-1}] = [PO_4^{3-}]$

