Problem 8.11 from text

- ◆ The normal boiling point of iodomethane, CH₃I, is 42.43 °C and its vapor pressure at 0 °C is 140 torr. Calculate
 - (a) standard enthalpy of vaporization (ΔH°_{vap}) of iodomethane
 - (b) standard entropy of vaporization (ΔS°_{vap}) of iodomethane
 - (c) the vapor pressure of CH₃I at 25 °C

Solution to problem 8.11

(a) The data given in the problem actually supplies the vapor pressure of at two temperatures (0 and 42.43°C, or 273.15 and 315.58 K), so the easiest equation to use is: $\ln{(P_2/P_1)} \approx \text{-} (\Delta \text{H}^\circ/\text{R})(1/\text{T}_2 - 1/\text{T}_1)$

$$\ln \frac{760}{140} = \frac{\Delta H^{\circ}_{\text{vap}}}{8.314 \text{ J mol}^{-1} \text{K}^{-1}} \times \left(\frac{1}{315.58 \text{ K}} - \frac{1}{273.15 \text{ K}} \right)$$

$$\Delta H^{\circ}_{\text{vap}} = +28.6 \text{ kJ mol}^{-1}$$

Solution to problem 8.11 cont.

(b) Now we can use the basic expression $\Delta G^{\circ} = \Delta H^{\circ}$ - T ΔS° to solve for ΔS° . Since ΔG at boiling point is zero,

$$\Delta S^{\circ}_{vap} = (\Delta H^{\circ}_{vap}/T_b)$$

$$\Delta S^{\circ}_{vap} = \left(\frac{28600 \text{ J}}{315.58 \text{ K}}\right) = +90.6 \text{ J K}^{-1}$$

Solution to problem 8.11

(c) Use again:
$$\ln (P_2/P_1) \approx -(\Delta H^{\circ}/R)(1/T_2 - 1/T_1)$$

$$\ln \frac{P_{298 \text{ K}}}{1 \text{ atm}} = -\frac{28600 \text{ J}}{8.314 \text{ J mol}^{-1} \text{K}^{-1}} \times \left(\frac{1}{298.15 \text{ K}} - \frac{1}{315.58 \text{ K}}\right)$$

$$P_{\text{A}} = 0.529 \text{ atm} = 402 \text{ torr}$$

$$P_{298 \text{ K}} = 0.529 \text{ atm } = 402 \text{ torr}$$

Sample Problem

$$CaCO_3(s) \iff CaO(s) + CO_2(g)$$

limestone

lime

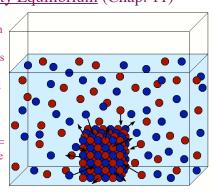
♦ Given:

$$\Delta H^{\circ}$$
 = + 178 kJ; at 25 °C, K_P = 1.39 \times 10⁻²³

• Give an estimate for K_p at 800 °C.

Solubility Equilibrium (Chap. 11)

The process is in equilibrium when rate of ions (or molecules) leaving the solid = rate returning to the solid. That is, when dissolution rate = precipitation rate



Solubility Product, K_{sp} (Sec. 11.10)

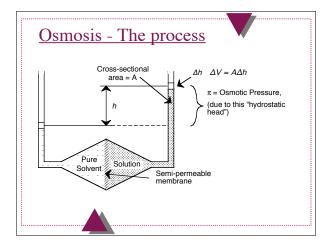
$$A_x X_y(s) \iff x \; X^{y+}(aq) + y \; X^{x-}(aq)$$

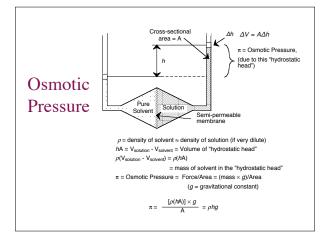
(eg., BaCl₂(
$$s$$
) \Longrightarrow Ba²⁺(aq) + 2 Cl⁻(aq))

- What is the form for the equilibrium constant?
- $K_{eq} = \frac{\text{activities of products}}{\text{activities of reactants}}$ (at equilibrium)
- Write the equilibrium constant expression.

Colligative Properties

- ◆ Depend solely on relative numbers of solvent and solute molecules in solutions, not on their chemical identity.
- ◆ The specifics of intermolecular interactions are not important for determining these properties
- ◆ Typical examples:
 - Boiling point elevation and freezing point depression
 - Osmosis and osmotic pressure



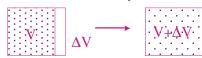


Osmosis

- ◆ Pure solvent "moves into" a solution when the solution and solvent are separated by a semipermeable membrane
- ♦ Why?

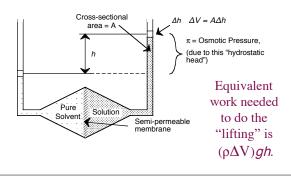
Entropy increases when solvent moves through the membrane into the solution because the solute molecules then have a greater volume to move in. (See sections 7.3 and 7.6).

Entropy change when solution volume increases by ΔV



n moles of solute molecules expand into available solvent like a gas expands into a vacuum.

 $\Delta S = n \text{Rln}[(V + \Delta V)/V] = n \text{Rln}[1 + (\Delta V/V)]$ Since $V >> \Delta V$, $\ln[1 + (\Delta V/V)] \approx \Delta V/V$ $\Delta S = n R(\Delta V/V) \implies T\Delta S = (nRT/V)\Delta V$ The solvent in the ΔV element must be "lifted" by height h.



Entropy Gain vs Enthalpy Cost

No more solvent will move from the pure solvent into the solution when ΔG for that process is no longer negative: $\Delta G = \Delta H - T\Delta S$ The enthalpy cost from "lifting" the solvent" in the volume element ΔV is: $\Delta H = (\rho \Delta V)gh$,

But $\pi = \rho gh$, $\therefore \Delta H = \pi \Delta V$ We already found $T\Delta S = (nRT/V)\Delta V$ $\pi = nRT/V$

So, when $\Delta G = 0$,

Other Useful Forms

$$\pi = nRT/V = [^n/V]RT$$

 $[^{n}/_{V}]$ = moles solute per liter solution

If we know mass (grams) of solute per liter, $c_{\rm m}$, then we transform to

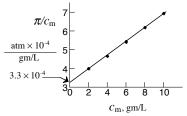
$$(^{mol}/_L) \sim (^g/_L)(^{mol}/_g)$$

$$[^{n}/_{\mathbf{V}}] = (^{c}_{\mathbf{m}}/_{\mathbf{M}})$$
 M = molar mass ("mol. weight")

$$\pi = ({}^{C}_{m}/M)RT$$

If the solute dissociates, a factor "i" accounts the actual number $\pi = i[^n/V]RT$ of particles:

Example: Determination of Polymer Molecular Weight



- ◆ "Real-life" data for polyvinylchloride dissolved in cyclohexanone at 40 °C.
- ♦ What is the average molecular weight?