Thermo Notes # 4 Entropy & the Free Energy

Friday, February 3 CHEM 102H T. Hughbanks

Problem

- The "Mond Process" is used commercially to produce pure nickel. Ni(s) + 4 CO(g) → Ni(CO)₄(g)
- First, try to <u>predict</u> the signs of ΔS° and ΔH° .
- Then use data on next slide to calculate values.

Data for Problem $Ni(s) + 4 CO(g) \rightarrow Ni(CO)_4(g)$ $\diamond \Delta S^{\circ}, \Delta H^{\circ} = ??$ $Ni(CO)_4(g)$ Ni(s) CO(g) ΔH_{f}° 0 -602.9 -110.52 S_{298}° 29.87 197.56 410.6 $\Delta H_{\rm f}{}^{\rm o}$ in kJ mol-1, $S_{298}{}^{\rm o}$ in J K-1 mol-1. Watch units!

Free Energy

- One more state function
- We know $\Delta S_{universe} > 0$ for a spontaneous change, but $\Delta S_{univ} = \Delta S_{(sys)} + \Delta S_{surr}$ and keeping track of the surroundings is inconvenient, to say the least.
- We are still looking for a state function of the *system* that will predict spontaneity.
- Define a new function that satisfies this need. Call it "free energy." (sometimes "Gibbs free energy")

Free Energy: Definition

- Define the free energy by:
 G = H TS
- ◆ G is a state function, since H, T, & S are. If <u>T</u> <u>& P are variables we control</u>, G is the function that predicts spontaneity.
- Consider a process that occurs at <u>constant</u> <u>temperature</u>.

 $\Delta G = \Delta H - T\Delta S$

 This is the central equation in chemical thermodynamics!

$\Delta G \ \mathcal{E} \ Spontaneity$

- ΔG is thus the function we have been seeking:
 - a state function of the system
 - sign tells us whether a process (reaction or phase change) is spontaneous
- ΔG is generally the most useful thermodynamic function for a chemist.

ΔG - Change in Free Energy

- Predictor of spontaneity. A spontaneous reaction has $\Delta G < 0$.
- Also tells us the maximum amount of energy which can be produced and used to do work. So ΔG is useful in determining amounts of fuel needed, etc.
- We saw that when ΔS_{univ} = 0, the system and surrounding are at <u>equilibrium</u>. Likewise, when ΔG = 0, the system is at <u>equilibrium</u> – a concept we will emphasize for the next several weeks!

Spontaneity: Role of T

• ΔG tells us whether or not a reaction will occur spontaneously.

 $\Delta G = \Delta H - T \Delta S$

- Usually, we assume that ΔH and ΔS do not depend on T. This means that only the T ΔS term varies with T.
- Effect of temperature depends on signs.

Spontaneity: Role of ΔH , ΔS , T						
ΔH	ΔS					
	+	Always Spontaneous				
+	_	Never Spontaneous				
+	+	Spontaneous at sufficiently high T				
I	I	Spontaneous at sufficiently low T				
_	-	sufficiently low T				

ΔG : Using Tabulated Data

- Thermodynamic tables (Appendix E) usually include ΔG_{f}° values.
- \bullet These are defined and used just like $\Delta H_{f}^{\,\,o's}.$
 - refer to formation reactions
 same standard state convention
- $\Delta G^{\circ}_{rxn} = \Sigma n \Delta G_{f}^{\circ}_{products} \Sigma n \Delta G_{f}^{\circ}_{reactants}$
- Can also use ΔH° , ΔS° to find ΔG°

Tabulated Data

- For N₂(g): $\Delta H_f^{\circ} = 0$, $\Delta G_f^{\circ} = 0$, S° = 191.61 J K⁻¹ mol⁻¹
- Note that the data give S° and **NOT** ΔS_{f}°
- \bullet Also, note that $\Delta G_f^\circ\,$ IS \underline{NOT} EQUAL TO $\Delta H_f^\circ T\,S^\circ$

Mond Process Ni(s) + 4 CO(g) → Ni(CO)₄(g) • Δ H° and Δ S° are both negative, so at low T the reaction is spontaneous.

 At high T, ΔG° becomes positive, so reaction proceeds spontaneously to the left. At high T, Ni(CO)₄ decomposes.

Mond Process

 $Ni(s) + 4 CO(g) \rightarrow Ni(CO)_4(g)$

- ◆ For Ni purification: First react impure Ni with pure CO to form Ni(CO)₄. (This works only for Ni, other metals are not as reactive with CO.)
- ♦ Need "low" T for reaction to go to right. Run at 50°C. (T_{boil} = 42°C for Ni(CO)₄.)

• Example (prob. 751): Use data in Appendix 2A to calculate ΔG° for each of the following reactions under standard conditions (at 25 K): (a) $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$ (b) $2 \operatorname{CaCO}_3(s) \rightarrow \operatorname{CaO}(s) + \operatorname{CO}_2(g)$ (c) $2 \operatorname{C}_8 \operatorname{H}_{18}(l) + 25 \operatorname{O}_2(g) \rightarrow 16 \operatorname{CO}_2(g) + 18 \operatorname{H}_2 O(l)$

Data						
	$\Delta H_{\rm f}^{\circ}(\rm kJ/mol^{-1})$	$\Delta G_{\rm f}^{\circ}$ (kJ/mol ⁻¹)	S _m ° (J/mol ⁻¹ K ⁻¹)			
$SO_2(g)$	-296.83	-300.19	248.22			
$O_2(g)$			205.14			
$SO_3(g)$	-395.72	-371.06	256.76			
$CaCO_3(s)$	-1206.9	-1128.8	92.9			
CaO(s)	-635.09	-604.03	39.75			
$CO_2(g)$	-393.51	-394.36	213.74			
$H_2O(l)$	-285.83	-237.13	69.91			
$C_{e}H_{1e}(l)$	-249.9	+6.4	358			

 \checkmark ΔH, ΔS, & ΔG vs. T

 The <u>most important</u> temp. dependence in ΔG can be seen directly: ΔG = ΔH - TΔS
 ΔH and ΔS actually do depend on T:

 $(\Delta X = X_{\text{final}}(T) - X_{\text{initial}}(T); X = H \text{ or } S)$

For infinitesimal changes for a single substance:

 $dH = C_P dT \quad ; \quad dS = \frac{dq}{T} = \frac{C_P dT}{T}$

$\Delta H, \Delta S, \mathcal{E} \Delta G vs. T$

 ΔH and ΔS at temperatures other than 298 K can be obtained by integration, provided we know the heat capacities:

$$H(T) = \int_{298}^{T} C_P dT' \quad ; \quad S(T) = \int_{298}^{T} \frac{C_P dT'}{T'}$$

• We then account for the changes in H's and S's for all the substances in the "reactants" and "products" and plug into $\Delta G = \Delta H - T\Delta S$.