

IIII Integrated Rate Laws

- From initial concentrations & rate law, we can predict all concentrations at any time *t*.
- Mathematically, this is an initial value problem involving a (usually) simple differential equation.

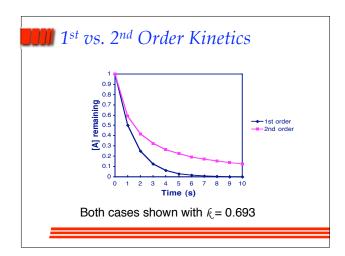
Simplest Case: First Order $A \rightarrow 2P$ rate = $-\frac{d[A]}{dt} = k[A]$ By integrating, we can get an equation relating concentration and time: $\int_{[A]_0}^{[A]_t} \frac{d[A]'}{[A]'} = -k \int_0^t dt'$ $\ln \frac{[A]_t}{[A]_0} = -kt$

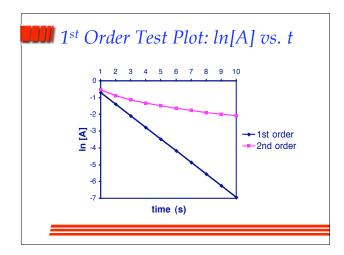
Second Order, one reactant
rate
$$= -\frac{d[A]}{dt} = k[A]^2$$

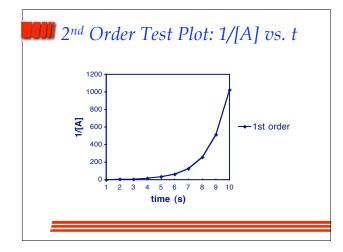
 $\frac{d[A]}{[A]^2} = -kdt \implies \int_{[A]_0}^{[A]_t} \frac{d[A]'}{[A]'^2} = -k \int_0^t dt'$
This leads to:
 $\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$ or $\boxed{\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}}$
• If second order kinetics apply, a plot of $1/[A]$ vs. t will be a line with slope k.

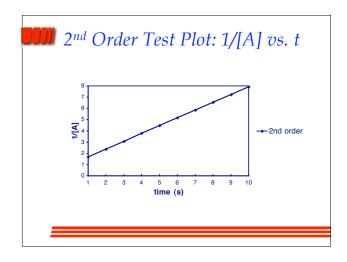
Second Order, one reactant
rate =
$$k[A]^2$$

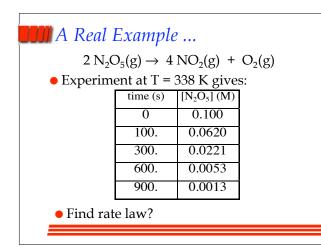
 $\frac{d[A]}{[A]^2} = -kdt$
This leads to:
 $\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$ or $\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$
• If second order kinetics apply, a plot of $1/[A]$ vs. t will be a line with slope k.

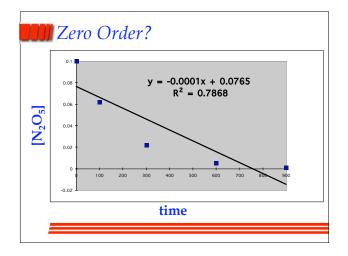


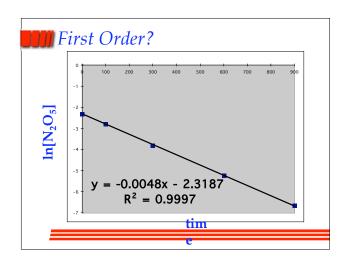


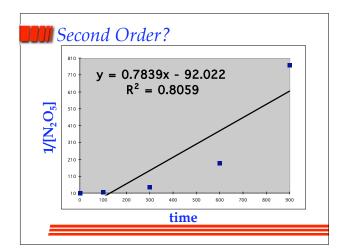












Example...

• Graphs show us that the reaction is first order, so:

rate = $k[N_2O_5]$

- We can also find k from slope of graph: ln [N₂O₅] = ln [N₂O₅]₀ - kt
- So slope is equal to -k. Fit gives us: $k = 0.0048 \text{ s}^{-1}$

Example (half life)

- At what time will the [N₂O₅] be equal to one-half of its original value?
- Use integrated rate law, solved for *t*:

$$t = \frac{1}{k} \ln \frac{[N_2 O_5]_0}{[N_2 O_5]}$$

• The question asks, what is *t* when $[N_2O_5] = (1/2)[N_2O_5]_0$?

Example.... (half-life)

$$t_{1/2} = \frac{1}{k} \ln \frac{[N_2O_5]_0}{(1/2)[N_2O_5]_0} = \frac{\ln 2}{k} = \frac{0.693}{k}$$

- So with $k = 0.0048 \text{ s}^{-1}$, we get $t_{1/2} = 144 \text{ seconds}$
- This is called the "half-life" of the reaction.
- For a first order reaction, half-life is independent of initial amount.