

Rate laws & mechanisms

- Start with overall reaction
- Guess some mechanism(s)
- Derive corresponding rate laws
- Compare with experiments
- Repeat as needed
- * We need to relate rates of individual steps to the overall, observable rate laws.

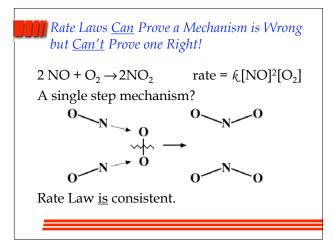
IIII Rate Determining Steps

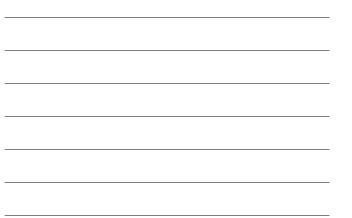
- If a single step in a reaction mechanism is much slower than the other steps, then the rate of the slow step is crucial in determining overall rate.
- The rate determining step (RDS) can be thought of as a "bottleneck" in the formation of products. Steps that follow the RDS have negligible effect on the overall rate of reaction.

 $2 \text{ NO}_2 \rightarrow 2 \text{ NO} + \text{O}_2$

- 2 possible mechanisms for this:
- 1. $NO_2 \rightarrow NO + O$ (slow) $O + NO_2 \rightarrow O_2 + NO$ (fast)
- 2. $2 \operatorname{NO}_2 \rightarrow \operatorname{NO}_3 + \operatorname{NO}$ (slow) $\operatorname{NO}_3 \rightarrow \operatorname{NO} + \operatorname{O}_2$ (fast)

IIII Example: rates & mechanisms


experimental rate law is:
 rate = & [NO₂]²


1.

rate = ?

$$\begin{array}{l} \text{NO}_2 \rightarrow \text{NO} + \text{O} \qquad (\text{slow}) \\ \text{O} + \text{NO}_2 \rightarrow \text{O}_2 + \text{NO} \qquad (\text{fast}) \end{array}$$

2.
$$2 \operatorname{NO}_2 \rightarrow \operatorname{NO}_3 + \operatorname{NO}$$
 (slow)
 $\operatorname{NO}_3 \rightarrow \operatorname{NO} + \operatorname{O}_2$ (fast)
rate = ?

Rate Laws ... Proof?

 $2 \text{ NO} + \text{O}_2 \rightarrow 2\text{NO}_2$ rate = $\&[\text{NO}]^2[\text{O}_2]$ Two-step mechanism? (1) NO + NO \rightleftharpoons N₂O₂ (fast equilibrium) (2) N₂O₂ + O₂ \rightarrow 2NO₂ (slow) Rate Law for this mechanism?

🛄 Mechanism & Rate

(1) NO + NO \rightleftharpoons N₂O₂ (fast equilibrium)

(2) $N_2O_2 + O_2 \rightarrow 2NO_2$ (slow)

- rate = rate of slow step = $k_2[N_2O_2][O_2]$
- N₂O₂ is <u>NOT</u> a reactant or a product. We should eliminate it from the rate law.

Equilibrium: $2 \text{ NO} \rightleftharpoons \text{N}_2\text{O}_2$

- The interconversion of products and reactants are an example of <u>equilibrium</u>
- Set: rate forward = rate backward $k_f[NO]^2 = k_r[N_2O_2]$
- Thus, the Equilibrium Constant, $K_{eq'}$ is:

$$\frac{\mathcal{R}_f}{\mathcal{K}_r} = \frac{[N_2O_2]}{[NO]^2} = K_{eq}$$

$$k_f [\text{NO}]^2 = k_r [\text{N}_2\text{O}_2]$$

• From this:

$$[N_2O_2] = (k_f / k_r) [NO]^2$$

$$2 NO_2 + O_2 \rightarrow 2 NO_2 , \text{ cont...}$$

$$2 NO \rightleftharpoons N_2O_2 \quad (\text{fast}) \\ N_2O_2 + O_2 \rightarrow 2NO_2 \quad (\text{slow})$$

$$\text{erate} = \text{rate of slow step} = \pounds_2[N_2O_2][O_2]$$

$$\text{e}[N_2O_2] = (\pounds_f/\pounds_r)[NO]^2$$

$$\text{esc} \\ \text{rate} = \pounds_2[N_2O_2][O_2] = \pounds_2(\pounds_f/\pounds_r)[NO]^2[O_2] \\ = \pounds_{\text{observed}}[NO]^2[O_2] = \pounds_2K_{eq}[NO]^2[O_2]$$