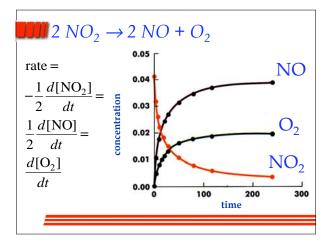


CHEM 102H T. Hughbanks

Chemical Kinetics

- Reaction rates
 - "How fast?"
- Reaction mechanisms
 - "How?"
- Answers to these questions depend on the path taken from reactants to products.


Reaction Rates

$$\alpha A + \beta B \rightarrow \gamma C + \delta D$$

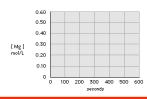
• Follow progress by measuring any one concentration:

$$-\frac{d[A]}{dt}, -\frac{d[B]}{dt}, \frac{d[C]}{dt}, \frac{d[D]}{dt}$$

Rates of change related by coefficients from balanced equation.

Factors That Influence Rates

- Identity & form of reactants, products
 - $H_2 + I_2 \ vs. \ H_2 + Br_2$
 - solution *vs.* gas phase, etc.
- Concentrations of various species
 - usually reactants
 - sometimes products, other species
- Temperature
 - usually, faster at higher T
 - strong dependence
- Catalysts


IIII Concentration Effects: Rate Laws

 $\alpha A + \beta B \to Products$ Empirically, usually find that $Rate = \ell [A]^n [B]^m$

n = "order of reaction with respect to A" m = "order of reaction with respect to B" n + m = "overall order of reaction" k = rate constant = k(T)

IIIII Example: rate of a redox reaction

IIII Reaction Orders

• Order of a reaction can NOT be found by looking at a balanced equation!

$$\alpha A + \beta B \rightarrow Products$$

Rate = $k[A]^n[B]^m$

- In general: α & n, β & m are not necessarily equal
- Reaction order can only be discovered in experiments

Examples

$$2 N_2 O_5 \rightarrow 4NO_2 + O_2$$

$$rate = k[N_2 O_5]$$

BUT

$$2 \text{ NO}_2 \rightarrow 2 \text{NO} + \text{O}_2$$

 $\text{rate} = \text{\&}[\text{NO}_2]^2$

• CAN'T predict these from equations!

More Examples

$$H_2 + I_2 \rightarrow 2HI$$

rate = $k[H_2][I_2]$

BUT

$$H_2 + Br_2 \rightarrow 2HBr$$

rate =
$$\frac{k[H_2][Br_2]^{1/2}}{1 + k'[HBr][Br_2]^{-1}}$$

III Finding rate laws, rate constants

- "Method of Initial Rates"
 - combine known amounts of reactants
 - determine rate by measuring change in some concentration over a "short" time
 - repeat with different initial concentrations
 - find experimental rate law

III Problem

 $A + 2B \rightarrow products$

Expt.	$[A]_0$	$[B]_0$	Initial Rate
1	0.10	0.10	0.0032
2	0.10	0.20	0.0032
3	0.20	0.30	0.0128

- find rate law & rate constant, &
- (concentrations in M, rates in M/min)

Rates & Mechanisms

Experiments → Rate Law Rate Law \rightarrow Mechanism (?)

• MECHANISM: "The detailed molecular processes by which a chemical reaction proceeds." A series of "elementary steps" which combine to give an observed net reaction.

Rate laws & mechanisms

- Start with overall reaction
- Guess some mechanism(s)
- Derive corresponding rate laws
- Compare with experiments
- Repeat as needed
- * We need to relate rates of individual steps to the overall, observable rate laws.

M reaction profile $A + B \rightarrow C \rightarrow D + E$ 1st step is ratedetermining reactants A + Bintermediate products D+E "Reaction Coordinate"

Elementary Steps

- ELEMENTARY STEP: A chemical equation or reaction that describes a process as it occurs at the molecular level. A single reaction event which occurs in one simple atomic or molecular collision.
- Most reactions do <u>not</u> occur in a single elementary step.

Reactions vs. Elementary Steps

• Normal chemical eqs. tell us the overall stoichiometry of a reaction.

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O$$

• Eq. for an elementary step looks just like a "normal" eq., but actually describes a simple molecular event.

$$NO_2 + NO_2 \rightarrow N_2O_4$$

Reactions vs. Elementary Steps

• Not always easy to tell an elementary step from a (slightly) more complicated reaction

$$2 \text{ NO}_2 \rightarrow \text{N}_2\text{O}_4$$
$$2 \text{ NO}_2 \rightarrow 2 \text{ NO} + \text{O}_2$$

• The first one is an elementary step, the second is not. You can't really tell this from the equations.

Types of Elementary Reactions • Unimolecular decomposition: one molecule falls apart: $A \rightarrow Product(s)$ • Bimolecular reaction: two reactant molecules collide: $A + B \rightarrow Product(s)$ • Termolecular reaction: three reactant molecules: $A + B + C \rightarrow Product(s)$ (such steps rare in gas-phase and soln. rxns.) ►NO examples of more complex elementary reactions are known. Rates of Elementary Steps For an elementary step, the rate law can be written from the equation: \bullet A \rightarrow Product(s) rate = k[A] \bullet A + B \rightarrow Product(s) rate = k[A][B]• $2A \rightarrow Product(s)$ rate = $k[A]^2$ • A + B + C \rightarrow Product(s) rate = k[A][B][C](not for gas phase reactions) ► Can ONLY write the rate expression for an elementary step! **III** Rate Determining Steps • If a single step in a reaction mechanism is much slower than the other steps, then the rate of the slow step is crucial in determining overall rate. • The rate determining step (RDS) can be thought of as a "bottleneck" in the formation of

products. Steps that follow the RDS have negligible effect on the overall rate of reaction.