Key Features of the Course
■ Text: Atkins \& Jones, NOT Peck et al.
■ Lab: much different, see Lab syllabus - 101H/113 Lab Manual NOT required!

■ Term Paper - required for honors courses.

- Topic deadline: Feb. 24th
- Outline deadline: Mar. 31st
- Due date: April 19th
- Homework, posted on web, 18\% of grade - Groups of 4 (voluntary)

Key Features of the Course
\square The gap between Honors and Non-honors section is larger than most other honors classes.

- I will conduct regular evening Q\&A sessions, the attendance of which is entirely voluntary.
- Rigorous science classes require that you NOT have to cram for exams - rather, you should be using the homework as part of a way to keep up with the material.

Are you in the Right Course?

- I assume that you are already familiar from your high school course(s) with the concepts in the introductory "Fundamentals" sections of the textbook.
\square Review this material; for Chem 102H sections A, D, G, H, I, J, K, and L are relevant (other sections were prerequisite to Chem 101H.
- Elementary principles of differential and integral calculus will also be assumed.
- If you are concerned that you may not be adequately prepared to succeed in this course, please consult with me during the first week of class.

Thermodynamics:
First Law \& Calorimetry
First up: Work, Heat, Energy
CHEM 102H
T. Hughbanks

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reading, etc.
■ Chapter 6 starting today!
■ Homework will is posted on the class web site:
■ http://www.chem.tamu.edu/rgroup/hughbanks/ courses/102H/chem102H.html
■ These lecture outlines, calendar of exam dates, syllabus, etc... also posted. \qquad
\qquad

Definitions, etc.

\qquad
\qquad
■ Early part of Chapter 6 deals with a lot of terms: system, surroundings, universe, \qquad etc.

- Read the material carefully; the material is a bit abstract. I'll try to discuss aspects of "work" and "heat" carefully, though in practice chemists don't really have to think about "work" all that often.

Quick Definitions

Universe $=$ System + Surroundings
System = That part of the universe we wish to study; Surroundings = everything else Open System: Exchanges both matter and energy with surroundings (often 'real world')
Closed System: Exchanges energy, but not matter, with surroundings (idealized)
Isolated System: no exchange of matter or energy with surroundings (more idealized)

Changes of state \mathcal{E} state functions

■ In thermodynamics, we usually talk about some change in a system. A change in a property X is just

$$
\Delta X=X_{\text {final }}-X_{\text {initial }}
$$

$\square X$ is called a state function if the value of ΔX depends only on the initial and final states, \& not on the path taken between them.
\qquad
\qquad

State Functions

Common state functions include $\mathrm{P}, \mathrm{V}, \mathrm{T}$, n_{i}, \ldots

- Equations of State: show the mathematical relationships between state variables (e.g., PV $=$ nRT approximates real gases).
■ Most books, including ours, use the convention that state functions are represented as capital letters. Lower case letters are usually not used for state functions.

Path Independence of State Functions

$$
\Delta \mathrm{X}=\mathrm{X}_{\text {final }}-\mathrm{X}_{\text {initial }}
$$

■ This does not specify what might happen between initial and final states.
$\square \Delta X$ is "path independent." We can imagine any process from initial to final states.

Energy, Heat, Work, ...

Definitions not always same as in ordinary use
■ Distinctions between these important
■ Our discussion will be limited - you will get more careful view in other courses \qquad
\qquad
\qquad

> Energy (U)

■ Often defined as "the ability to do work."
■ Lots of different forms of energy, as we have seen: potential, kinetic, light, etc.
■ We look mainly at chemical energy, which is the energy stored in the chemical bonds in a substance or released when such bonds are formed. Chemical energy can be converted into other forms of energy.

Internal Energy

- We often discuss the change in "internal energy" (or just the change in energy) of a system.
■ Our text uses ΔU for this.
■ We rarely talk about U itself, because there is no absolute scale for energies.
- Other books often use ΔE for the change in internal energy.

Review: Gas Temperature \mathcal{E} Kinetic Energy

■ T is proportional to the average kinetic energy of the molecules in a gas.

- Ideal gas (per mole): $\mathrm{KE}_{\text {avg }}=(3 / 2) \mathrm{RT}$
- At a given T, different gases have same average KE.
- See Chapter 4 in Atkins \& Jones (p. 146) or Chapter 12 in Whitten, Davis, \& Peck, 6th ed.

Molecular Speeds
\square Given by Maxwell-Boltzmann
distribution function
$\square \mathrm{KE}_{\text {avg }}=(3 / 2) R T=(1 / 2) \mathrm{mu}_{\text {avg }}{ }^{2}$
\Rightarrow Average speed $=\mathrm{u}_{\text {avg }} \propto(\mathrm{T} / \mathrm{m})^{1 / 2}$
\square Light or Hot \rightarrow fast
\square Heavy or Cold \rightarrow slow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Heat (q)
"A transfer of thermal energy into or out of a system."
■ Note that heat and temperature are not the same thing. Temperature is a measure of thermal energy, while heat is a change in thermal energy. Heat always "flows" from regions of higher T to those with lower T .

- Also note that heat does not always produce a change in T....

> Work (w)

■ Thermodynamic definition: "energy transfer accomplished by a force moving an object some distance." \qquad
■ Work $=$ force \times distance; $w=\mathrm{F} \times \mathrm{d}$

- If nothing moves, no work is done!

F $\times \mathrm{d}=($ mass $\times a) \times d$ $=\mathrm{kg} \times\left(\mathrm{m} / \mathrm{s}^{2}\right) \times \mathrm{m}$ $=\mathrm{kg} \times\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right)$ \sim mass $\times \mathrm{v}^{2} \sim$ K.E.

Work Example: Storing energy in a Spring
■ Work $=$ force \times distance; $w=\mathrm{F} \times \mathrm{d}$

$$
\mathrm{d} w=k x d x
$$

$$
\begin{aligned}
& \square 70 \text { force exerted }
\end{aligned}
$$

$$
\begin{aligned}
& w=\int_{0}^{x} d w=k \int_{0}^{x} x^{\prime} d x^{\prime}=\frac{k}{2} x^{2}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Work in chemical reactions?

Usually, the only form of work which is done in a chemical process is "PV-work," or "work of expansion or compression."
■ This is given by

$$
w=-\mathrm{P}_{\mathrm{ex}} \Delta \mathrm{~V} \text { (note the sign) }
$$

when $P_{\text {ex }}$, the external pressure, is constant. If $P_{\text {ex }}$ varies as the process occurs, we need calculus to find that w is the integral of $-\mathrm{P}_{\mathrm{ex}} \mathrm{dV}$ \qquad
\qquad

$$
P V \text {-work }
$$

Units Check
Pressure ~ Force/Area
Volume \sim Area \times Distance
PV ~Force \times Distance
~Energy (or Work)
Work is done on system
$w=-\mathrm{P}_{\text {ex }} \Delta \mathrm{V}>0$ because
$\mathrm{V}_{\text {final }}<\mathrm{V}_{\text {initial }}$

Example

- An automobile piston with a radius of 5.0 cm is displaced by 8.0 cm after \qquad firing. How much work is done (on the system) in each firing stroke if the external pressure is 3.5 bar?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Adiabatic Processes

Both the previous examples involve nearly adiabatic processes. \qquad
■ Adiabatic: occurring with no transfer of heat, $\mathrm{q}=0$.
■ In adiabatic processes, all the energy change is due to work done on ($w>0$), or by $(\mathrm{w}<0)$ the system.

Isothermal Processes

■ If the temperature of the system remains constant throughout a process, it is said to be isothermal.

- (Nearly) isothermal processes are carried out by keeping the system in good thermal contact with a large "bath" in the surroundings. When the bath is large compared to the system, the system's temperature varies little.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Isothermal Ideal Gas Expansion
\qquad
\qquad
Suppose we carry out a reversible expansion of an ideal gas at constant temperature. When reversible, $\mathrm{P}=\mathrm{P}_{\text {ex }}$
for each infinitesimal step of the expansion, $d w=-P d V$

$$
\begin{gathered}
w=\int_{V_{i}}^{V_{f}} d w=-\int_{V_{i}}^{V_{f}} P d V=\int_{V_{i}}^{V_{f}} \frac{n R T}{V} d V=-n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V} \\
w=-n R T \ln \frac{V_{f}}{V_{i}}
\end{gathered}
$$

■ As we've discussed, actually performing an expansion this way is not easy.

Heat capacity: relating $q \mathcal{E} T$

■ If we change T at constant $P: \quad q=n C_{p} \Delta T$
$\square \mathrm{n}$ is number of moles of the substance

- $\Delta \mathrm{T}$ is change in temperature
- C_{p} is "molar heat capacity" of the substance

$$
C_{P}=\frac{q_{P}}{\Delta T}
$$

(remember, measurements at constant P)

- Also often see $q=m c \Delta T$, especially in physics \& engineering books. Here c is called "specific heat." Just different units!

Heat capacity: relating q E T
$■$ If we change T at constant $V: \quad q=\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{T}$
$\square \mathrm{n}, \Delta \mathrm{T}$ have same meaning as before
■ C_{V} is "constant-volume heat capacity":

$$
C_{V}=\frac{q_{V}}{\Delta T}
$$

(remember, measurements at constant V)
\square Which is bigger, C_{V} or C_{P} ?
We'll see about that...

■ $w>0$ when work is DONE ON the system
$\square q>0$ when heat is ADDED TO the system
■ These are scientist's definitions, engineers often change the sign of w. (When that definition is used, then $\Delta U=q-w$. We will never use that definition.)
C_{V} vs. C_{P} for an Ideal Gas
Let's compare heating an ideal gas under constant V and constant P :

$$
\begin{aligned}
& P_{1}, T_{1}, V_{1} \xrightarrow{\Delta V=0} P_{2}, T_{2}, V_{1} \\
& P_{1}, T_{1}, V_{1} \xrightarrow{\Delta P=0} P_{1}, T_{2}, V_{2}
\end{aligned}
$$

We are starting from the same state, and heating to the same final temperature (NOT the same final state!)
What do we know about $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ in each case?
\qquad
\qquad
C_{V} vs. C_{P} for an Ideal Gas
The heat capacities are defined under just these conditions:

$$
\begin{array}{ll}
P_{1}, T_{1}, V_{1} \xrightarrow{\Delta V=0} P_{2}, T_{2}, V_{1} & q_{V}=C_{V} \Delta T \\
P_{1}, T_{1}, V_{1} \xrightarrow{\Delta P=0} P_{1}, T_{2}, V_{2} & q_{P}=C_{P} \Delta T
\end{array}
$$

In the constant V case, no work is done

$$
\therefore \Delta U_{V}=q_{V}=C_{V} \Delta T
$$

For one mole of ideal gas, $U=(3 / 2) R T$, therefore, $C_{V}=(3 / 2) R$

Problem

- Imagine an ordinary room filled with an ideal gas. Recall that $\Delta U=C_{V} \Delta T$, where C_{V} is the molar constant-volume heat capacity.
Q : If C_{V} is constant over a certain range of temperatures, how does the energy of the gas in the room change as we increase the temperature in that range?
C_{V} vs. C_{P} for an Ideal Gas
The heat capacities are defined under just these conditions:

$$
\begin{array}{ll}
P_{1}, T_{1}, V_{1} \xrightarrow{\Delta V=0} P_{2}, T_{2}, V_{1} & q_{V}=C_{V} \Delta T \\
P_{1}, T_{1}, V_{1} \xrightarrow{\Delta P=0} P_{1}, T_{2}, V_{2} & q_{P}=C_{P} \Delta T
\end{array}
$$

In the constant V case, no work is done

$$
\therefore \Delta U_{V}=q_{V}=C_{V} \Delta T
$$

-

C_{V} vs. C_{P} for an Ideal Gas
For the process at constant P :

$$
\begin{gathered}
T_{1} V_{2}=T_{2} V_{1} \Rightarrow T_{1} V_{2}-T_{2} V_{1}=0 \\
T_{1} V_{2}-\left(T_{2}-T_{1}\right) V_{1}-T_{1} V_{1}=0 \text { (algebra trick: add zero) } \\
T_{1}\left(V_{2}-V_{1}\right)-\left(T_{2}-T_{1}\right) V_{1}=0 \Rightarrow T_{1} \Delta V=V_{1} \Delta T \\
\Delta V=\frac{V_{1}}{T_{1}} \Delta T
\end{gathered}
$$

Final temperature, T_{2}, is the same for both processes. Since $U=U(T), \Delta U_{V}=\Delta U_{P}$.
C_{V} vs. C_{P} for an Ideal Gas
For the process at constant P :

$$
\begin{gathered}
\Delta U_{P}=q_{P}+w_{P}=C_{P} \Delta T+w_{P}= \\
C_{P} \Delta T-\int_{V_{1}}^{V_{2}} P_{1} d V=C_{P} \Delta T-P_{1} \Delta V \\
\Delta U_{V}=\Delta U_{P} \Rightarrow C_{V} \Delta T=C_{P} \Delta T-P_{1} \Delta V \\
C_{V} \Delta T=C_{P} \Delta T-P_{1}\left(V_{1} / T_{1}\right) \Delta T=\left(C_{P}-R\right) \Delta T \\
C_{P}=C_{V}+R=\frac{5}{2} R
\end{gathered}
$$

Physical Origin of C_{V}

Each translational degree of freedom contributes $(1 / 2) R$ to the heat capacity

- For gas molecules with more than one atom, rotational and vibrational motion can be places to "store energy".
- Diatomics and linear polyatomics: 2 rotational degrees of freedom: $(1 / 2) \mathrm{R}$ each.
- All other degrees of freedom are vibrational. At high temps, these each contribute R.
■ In all gases, $C_{P}=C_{V}+R$

Examples: C_{V} and C_{P} of Some Gases		
Estimate C_{V} and C_{P} for one mole of each of the following gases: $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{I}_{2}$, $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}$		
$\left(3.5 \cdot \mathrm{R}=29.10 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$		
$\left(4.0 \cdot \mathrm{R}=33.26 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$		
\square Experiment (C_{P} in $\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$ at 298 K):		
H_{2} : 28.82	$\mathrm{N}_{2}: 29.12$	$\mathrm{O}_{2}: 29.36$
$\mathrm{F}_{2}: 31.30$	$\mathrm{I}_{2}: 36.90$	$\mathrm{CO}_{2}: 37.11$
$\mathrm{H}_{2} \mathrm{~S}: 34.23$	$\mathrm{CH}_{4}: 35.31$	$\mathrm{C}_{2} \mathrm{H}_{2}: 43.93$

