Groups 15-17 elements

CHEM 102 T. Hughbanks

Group 15 Elements

- ◆ Range from electronegative nitrogen to somewhat electropositive Bi
- ◆ Atomic configurations *n*s²*n*p³
- ◆ Bonding in the elements is strong and p orbital participation in bonding is dominant. sp² (N) and sp³ hybridization is common in compounds. Bi in oxidation state III common ("inert pair" effect).

Elemental properties . . .

	melting pts. °C	boiling pts. °C	Density (g•cm³)	Form, properties
N	-210	-196	1.04(l)	colorless gas
P	44	660	1.82	Nonmetal, many forms
As	613(s)	sublimes	5.78	gray semimetal
Sb	631	1750	6.69	Blue-white, shiny semimetal
Bi	271	1650	8.90	metallic

Forms of phosphorus

The story of phosphorus

Group 15 hydrogen compounds

◆ Some laboratory ways to make ammonia: H₂O

- Industrial method: Haber process (Fe/Fe₃O₄ catalyst). More moles of NH₃ produced than any other industrial chemical.
- NH₃ has some similarities to water, but is less polar and has a smaller self-ionization constant (~10-³⁰ at −50 °C).

Haber process - reality check!

- · All the following are important in the modern process:
 - $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3 H_2(g)$ ~750°C, 40 atm
 - $ZnO(g) + H_2S(g) \rightarrow ZnS(s) + H_2O(g)$ remove H_2S from CH_4

Converts CO to CO2 (removable) and makes more H2

- 2 CH₄(g) + $^{1}/_{2}$ O₂(g) + 2 N₂(g) \rightarrow CO(g) + 2 H₂(g) + 2 N₂(g) Removes oxygen from added air (\sim $^{1}/_{2}$ O₂(g) + 2 N₂(g))
- Removes oxygen from added air $(\sim 7_2 \text{ O}_2(g) + 2 \text{ N}_2(g))$ $CO(g) + \text{H}_2O(g) \rightleftharpoons CO_2(g) + \text{H}_2(g)$

• $N_2(g) + 3 H_2(g)$ \rightleftharpoons 2 $NH_3(g)$ $\Delta H^{\circ} = -92.2 \text{ kJ/mol}$; $K_{298} = 6.8 \times 10^5$

Reactants are finally pure. Process conducted at 400-500 $^{\circ}$ C, 100 - 1000 atm

Nitrogen vs. Phosphorus, As, Sb

- N-X π bonding important
 - 3- and 2-coordination is common in multiple bonding to X = N, C, O
- P-X $p\pi$ - $p\pi$ bonding is weak
 - 3 single bonds + lone-pair or 4 single bonds (cation) both common.

Eg., N_2 vs. P_4 or other forms of phosphorus, or As $N_2O_5 \ vs. \ P_4O_{10}$

Nitrogen vs. Phosphorus, As, Sb

- ◆ Nitrogen chemistry strongly influenced by stability of N₂, so 'fixing' of nitrogen a major chemical challenge
 - Many compounds have positive heats of formation
- for phosphorus, bonds to oxygen are important, P-P bonds tend to be reactive
 - no natural occurrence of P-P bonds (not too difficult to synthesize, however)

Some important N/O compounds

• $NH_4NO_3(s) \rightarrow N_2O(g) + 3 H_2O(g) \sim 250 ^{\circ}C$

N₂O: Useful anesthetic (laughing gas)

♦ 4 NH₃(g) + 5 O₂(g) \rightarrow 4 NO(g) + 6 H₂O(g) ~1000 °C, Pt catalyst (neurotransmitter)

• 2 NO(g) + O₂(g) \rightarrow 2 NO₂(g) rapid in air Significant pollutant, in eq. with N₂O₄(g)

• 3 NO₂ + H₂O(l) \rightarrow NO(g) + 2 HNO₃(aq)

Steps shown are the Ostwald process for nitric acid.

P/O compounds

- $P_4(s) + 3 O_2(g) \rightarrow P_4O_6(s)$ Limited oxidation
- $P_4(s) + 5 O_2(g) \rightarrow P_4 O_{10}(s)$ excess air Both are subject to Hydrolysis to give acids
- Opening up of P-O-P bridges is highly exothermic in reactions with water.

Biologically very important:

$$ATP + H_2O \rightarrow ADP + HPO_4^{2-} + H_3O^+$$

Adenosine triphosphate

$P_4O_{10} (P_2O_5)$ and P_4O_6

Hydrolysis of ATP

Lewis basicity

◆ The electron-pair donating property of ammonia, amines, and phosphines is important in the chemistry of these compounds in reactions with metals.

Halogen compounds of Group 15

- ◆ NF₃ is stable, NCl₃ is reactive (bleach for flour), neither is very basic.
- ◆ Halides of P, As, and Sb are important laboratory chemicals: AX₃ and AX₅ forms are both important.
- ◆ PCl₃ and PBr₃ are reactive and useful as starting materials to other P-containing compounds. PF₃ more stable.
- ◆ PF₅, PCl₅, AsF₅, SbF₅, SbCl₅ are <u>strong</u> Lewis acids.

Group 16 - general characteristics

- Range from highly electronegative oxygen to metalloid Te
- Atomic configurations $ns^2 np^4$
- pπ-pπ bonding is again most important for the first element, oxygen. With six valence electrons, in most molecules these atoms bear from 1 to 3 lone pairs and hence have fewer bonds.

Physical properties

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ü	boiling pts. °C	-	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	О	-219	-182	1.27(l)	diatomic gas
Gray) Te 450 1390 6.25 Te _∞ chains Po radioactive semimetallic,	S	* * * *	440		
Po radioactive semimetallic,	Se		688	4.82	
	Те	450	1390	6.25	Te _∞ chains
	Po	Г	adioactive	•	

◆ Basic Oxides ("Ionic")

Alkali, alkaline-earth, and other electropositive metal oxides, e.g.,

$$\begin{split} {\rm CaO} + 2 \; {\rm H_2O} \; &\to {\rm Ca^{2+}}(aq) + 2 \; {\rm OH^-}(aq) \\ [{\rm O^{2-}} + {\rm H_2O} \; &\to \; 2 \; {\rm OH^-}(aq), \quad \; {\rm K} > 10^{22}] \end{split}$$

◆ Acidic Oxides ("Covalent") - Acid anhydrides

Element-oxygen bond not broken on dissolution in water. <u>Either</u> an E-O-E bridge is hydrolyzed <u>or</u> water is added across a double bond. e.g.,

Acidic Oxides - more

◆ Oxide → Acid

$$SO_3 \rightarrow H_2SO_4 = (O)_2S(OH)_2$$

 $SO_2 \rightarrow "H_2SO_3" = (O)S(OH)_2$ (not isolated)

$$\begin{split} &P_4O_{10} \rightarrow H_3PO_4 = (O)P(OH)_3 \\ &P_4O_6 \rightarrow H_3PO_3 = H(O)P(OH)_2 \\ &N_2O_5 \rightarrow 2 \ HNO_3 = (O)_2N(OH) \end{split}$$

Group 17 elements

CHEM 102 T. Hughbanks

Properties

	m. p. °C	b. p. °C	Density (g•cm³)	Description
F	-219	-182	1.513 (<i>l</i> , -188°C)	pale yellow diatomic gas
Cl	-101	- 34	1.655 (<i>l</i> , -70°C)	greenish-yellow diatomic gas
Br	-7.3	59.5	3.187	blood-red diatomic liquid
I	114	185	3.96	deep-purple diatomic solid
At		I	adioactive	

Halide Chemistry

- We have already discussed several compounds with halides in earlier lectures
- ◆ The elements are unremarkable: all have diatomic molecular structures, X₂, but intermolecular forces increase moving down the series.
- Halide compounds are important intermediates to other compounds.

Methods of preparing halides

♦ <u>Direct reaction</u>, useful for highest ox. state, e.g., (M = Si, Ge, Sn, Ti, Zr) $M(s) + X_2 \rightarrow MX_4$ or (M = Al, Ga, In, Sc, Y) $M(s) + {}^3/{}_2I_2 \rightarrow MI_3$ Higher ox. states favored by more electronegative X: $Mo(s) + excess Cl_2 \rightarrow MoCl_5$ $Mo(s) + excess Br_2 \rightarrow MoBr_3$ $Fe(s) + excess X_2 \rightarrow FeX_3 \quad (X = Cl, Br)$ $Fe(s) + excess I_2 \rightarrow FeI_2 (FeI_3 unknown)$

More Methods of preparing halides

• Reaction with HX, useful for lower ox. state (why?), e.g., Sn(s) + conc. aq. $HI \rightarrow SnI_2$ $Cr(s) + 2HCl(g) \rightarrow CrCl_2$ - at red heat compare: $Cr(s) + {}^{3}/{}_{2}CI_{2} \rightarrow CrCl_{3}$ - $600 \, {}^{\circ}C$ • Dehydration, e.g., $MnCl_2 \cdot 4H_2O + excess SOCl_2(l) \rightarrow$ $MnCl_2(s) + SO_2(g) + HCl(g)$ [note: $SOCl_2(l) + H_2O(l) \rightarrow SO_2(g) + HCl(g)$]

Halides often the route to other compounds

Halides often used as volatile intermediates

◆ Example: Silicon production

Fluorine vs. others; bond energy comparison

Турі	cal avei	age bor	d energies	to haloge	ns, kJ/mol
37	3737	1137	DW	A 137	OW

F 158 574 645 582 456 C1 243 428 444 427 327 Br 193 363 368 360 272 I 151 294 272 285 239	X	XX	HX	BX_3	AlX_3	CX_4
Br 193 363 368 360 272	F	158	574	645	582	456
	Cl	243	428	444	427	327
I 151 294 272 285 239	Br	193	363	368	360	272
	I	151	294	272	285	239