The sp-block elements (II)

CHEM 102 T. Hughbanks

Group 13 Elements

- Electropositive character of elements still very important
- Atomic configurations ns² np¹
- Bonding in the elements is much stronger and p orbital participation in bonding is important. sp² and sp³ hybridization is common in compounds, except for In and especially Tl in oxidation state I ("inert pair" effect).

A highly variable group					
		melting pts. °C	boiling pts. °C	Density (g•cm ³)	Form, properties
_	В	2030	3700	2.47	Brown, semicond.
	Al	660	2350	2.70	Silvery metal
	Ga	30	2070	5.91	Silvery, soft metal
	In	157	2050	7.29	Silvery, soft metal
	Tl	304	1460	11.87	soft metal
Boiling point trend tells us more about bond strengths here					

Sources/uses of Group 13 elements

- ◆ Boron from Na₂B₄O₇•*n*H₂O (*borax*)
- Al from electrolysis.
- ◆ Ga is is a byproduct of Al production; In is a byproduct of Pb/Zn production; Tl must be separated from other "flue-dust" elements (Ni; Zn, Cd, In; Ge, Pb; As; Se, Te).
- Ga and In have uses in specialized semicond. devices (LEDs, junction metals, dopants in Si & Ge, photoconductors) and low-T solders.

Some general group trends

- Boron has chemistry that more covalent, with some similarities to silicon in compounds with halogens and oxygen. The chemistry of boron-rich compounds is unique.
- Al, Ga, and In chemistry is dominated by oxidation state III. Bonds with "ligands" have polar covalent character.
- Tl has a prominent ox. state I chemistry.

Boron-rich solids

Boron takes on many forms in the solid-state. The icosahedron is the basic building-block of all the forms and of many other boron-rich solids. This shows a cut-away of clusters from 4 layers of the simplest boron form! The network structure makes makes boron very hard and resistant to chemical attack.

Some key compounds of B and Al

- B_2H_6 , NaBH₄, BX₃ (X = halides)
- ◆ B(OH)₃ (boric acid).
- Boron is used to strenthen plastics, it is much stiffer and lighter than Al. Borates used in borosilicate glass - which are lower melting and much more workable than pure SiO₂.
- Al₂O₃ (alumina), AlX₃ (X = halides), Al(OH)₃ (an insoluble amphoteric hydroxide)

Acidic Behavior

- Boron and aluminum are important as Lewis acids, e.g, AlCl₃(anhyd.), BCl₃, BF₃, BH₃
- ◆ In aqueous solution, B(OH)₃(aq) + H₂O \rightleftharpoons H₂O:B(OH)₃ \rightleftharpoons [B(OH)₄]⁻ + H₃O⁺
- BF₃ behaves similarly: $H_2O:BF_3 \rightleftharpoons [BF_3(OH)]^- + H_2O^+$
- ◆ Al^{III} and Ga^{III} in aqueous solution:
 - $[Al(H_2O)_6]^{3+} \rightleftharpoons [Al(H_2O)_5(OH)]^{2+} + H_3O^+$

