Chemical Kinetics

CHEM 102 T. Hughbanks

IIII Integrated Rate Laws

- From initial concentrations & rate law, we can predict all concentrations at any time *t*.
- Mathematically, this is an initial value problem involving a (usually) simple differential equation.

Simplest Case: First Order

$$A \rightarrow 2P$$
 rate = $-\frac{d[A]}{dt} = k[A]$

By integrating, we can get an equation relating concentration and time:

$$\int_{[A]_0}^{[A]_t} \frac{d[A]'}{[A]'} = -k \int_0^t dt'$$

$$\ln \frac{[A]_t}{[A]_0} = -kt$$

First Order Reactions

$$\ln \frac{\left[A\right]_t}{\left[A\right]_0} = -kt$$

$$\frac{\left[A\right]_{t}}{\left[A\right]_{0}} = e^{-kt} \text{ so } \left[A\right]_{t} = \left[A\right]_{0} e^{-kt}$$

• From this, see that a plot of ln[A] vs. *t* will be a line with a slope of -*k*.

Half-Lives of radioisotopes

³ ₁ H	12.3 y	$^{235}_{92}$ U	$7.1 \times 10^8 \text{ y}$
¹⁴ ₆ C	$5.73 \times 10^3 \text{ y}$	²³⁸ ₉₂ U	4.5×10 ⁹ y
¹⁵ ₆ C	2.4 s	¹³⁷ ₅₅ Cs	30.17
⁴⁰ ₁₉ K	$1.26 \times 10^9 \text{ y}$	¹³¹ ₅₃ I	8.05 d
⁹⁰ ₃₈ Sr	28.1 y	²²⁶ ₈₈ Ra	$1.60 \times 10^3 \text{ y}$
⁶⁰ ₂₇ Co	5.26 y		

IIII Example

Hydrogen peroxide decomposes into water and oxygen in a first-order process.

$$H_2O_2(aq) \rightarrow H_2O(l) + \frac{1}{2}O_2(g)$$

At 20.0 °C, the ½-life for the reaction is 3.92×10^4 seconds. If the initial concentration of hydrogen peroxide is 0.52 M, what is the concentration after 7.00 days (6.048×10^5 s)?

📕 Second Order, one reactant

$$rate = -\frac{d[A]}{dt} = k[A]^2$$

$$\frac{d[A]}{[A]^2} = -k dt \implies \int_{[A]_0}^{[A]_t} \frac{d[A]'}{[A]'^2} = -k \int_0^t dt'$$

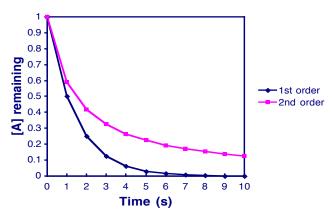
This leads to:

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = k t$$
 or $\frac{1}{[A]_t} = k t + \frac{1}{[A]_0}$

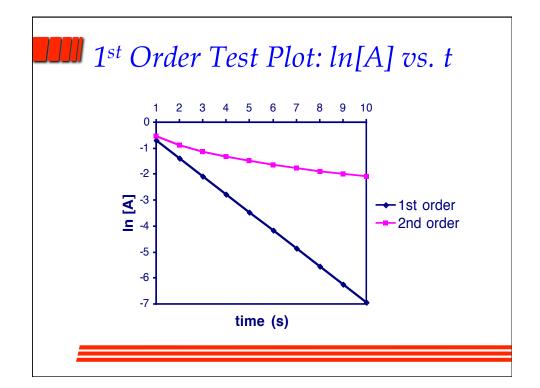
• If second order kinetics apply, a plot of 1/[A] vs. t will be a line with slope k.

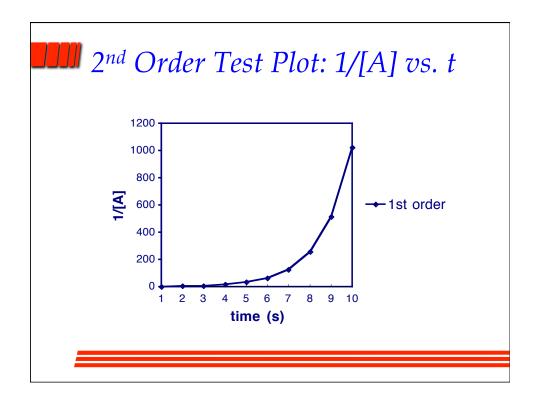
Second Order, one reactant

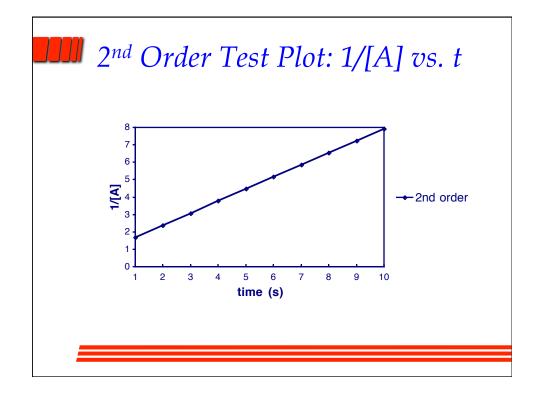
$$rate = k[A]^2$$


$$\frac{d[A]}{[A]^2} = -k dt$$

This leads to:

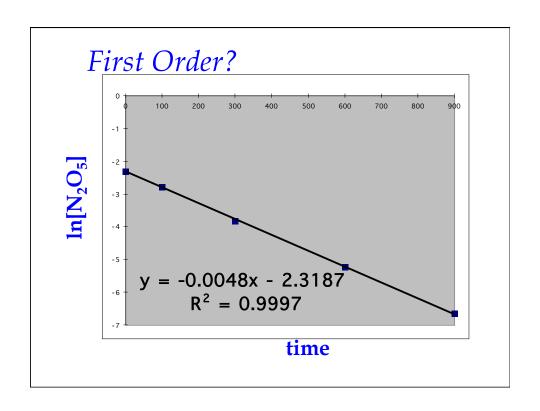

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = k t \text{ or } \left| \frac{1}{[A]_t} = k t + \frac{1}{[A]_0} \right|$$

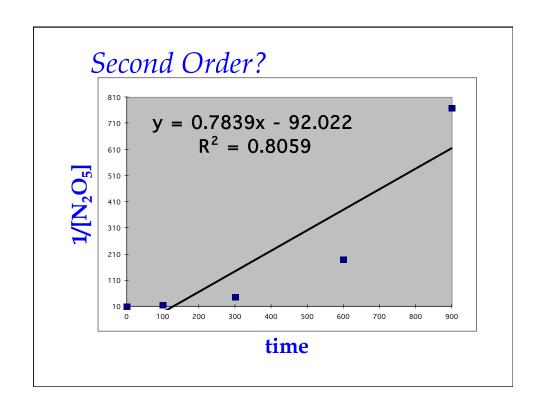

• If second order kinetics apply, a plot of 1/[A] vs. t will be a line with slope k.



Both cases shown with k = 0.693 (Which is not terribly meaningful since units differ!)

IIII A Real Example ...


$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$


• Experiment at T = 338 K gives:

time (s)	$[N_2O_5](M)$
0	0.100
100.	0.0620
300.	0.0221
600.	0.0053
900.	0.0013

• Find rate law?

IIII Example...

• Graphs show us that the reaction is first order, so:

rate =
$$k[N_2O_5]$$

- We can also find k from slope of graph: $\ln [N_2O_5] = \ln [N_2O_5]_0 - kt$
- So slope is equal to -k. Fit gives us: $k = 0.0048 \text{ s}^{-1}$

IIII Example (half life)

- At what time will the [N₂O₅] be equal to one-half of its original value?
- Use integrated rate law, solved for *t*:

$$t = \frac{1}{k} \ln \frac{[N_2 O_5]_0}{[N_2 O_5]}$$

• The question asks, what is t when $[N_2O_5] = (1/2)[N_2O_5]_0$?

Radioactive Half-Life: 1st Order Kinetics

Elements that decay via radioactive processes do so according to 1st order kinetics:

Element: Half-life:

$$^{238}_{92}U \rightarrow ^{238}_{92}Th + ^{4}_{2}\alpha$$
 4.5×10^{9} years
 $^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}\beta$ 5730 years
 $^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}\beta$ 8.05 days

notes: ${}_{-1}^{0}\beta$ is an electron, ${}_{2}^{4}\alpha$ is a ${}_{2}^{4}$ He nucleus.

Radioactive Half-Life: 1st Order Kinetics

Tritium decays to helium by beta (β) decay:

$${}^{3}_{1}\text{H} \rightarrow {}^{0}_{-1}\text{e} + {}^{3}_{2}\text{He}$$

The half-life of this process is 12.3 years

Starting with 1.50 mg of ³H, what quantity remains after 49.2 years?

Radioactive Half-Life: 1st Order Kinetics

Recall that that the rate constant for a 1st order process is given by:

$$k = \frac{\ln(2)}{t_{1/2}} = \frac{0.693}{t_{1/2}}$$

$$\frac{[A]_t}{[A]_0} = e^{-kt} \longrightarrow [A]_t = [A]_0 \times e^{-kt}$$

$$[^3H]_t = 1.50 \text{ mg} \times e^{-\frac{0.693}{12.3 \text{ years}} \times 49.2 \text{ years}}$$

$$= 0.094 \text{ mg}$$

Radioactive Half-Life: 1st Order Kinetics

Notice that 49.2 years is 4 half-lives...

$$\frac{49.2}{12.3} = 4$$

After 1 half life: $\frac{1.50 \text{ mg}}{2} = 0.75 \text{ mg remains}$

After 2 half life's: $\frac{1.50 \text{ mg}}{4} = 0.38 \text{ mg remains}$

After 3 half life's: $\frac{1.50 \text{ mg}}{8} = 0.19 \text{ mg remains}$

After 4 half life's: $\frac{150 \text{ mg}}{16} = 0.094 \text{ mg remains}$

Another Example ... (half life)

• 14 C measurements on the linen wrappings from the Dead Sea Scrolls suggest that the scrolls contain about 80.3% of the 14 C expected in living tissue. How old are the scrolls if the half-life for the decay of 14 C is 5.73×10^3 years?

Note: Radiocarbon dating relies on the uptake of ¹⁴C into living tissue and subsequent decay after the death of the organism. ¹⁴C is produced at a steady rate by cosmic ray absorption:

$${}_{0}^{1}n + {}_{7}^{14}N \rightarrow {}_{6}^{14}C + {}_{1}^{1}p \quad (decay: {}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{-1}^{0}e^{-} + v)$$