

## IIII Integrated Rate Laws

- From initial concentrations & rate law, we can predict all concentrations at any time *t*.
- Mathematically, this is an initial value problem involving a (usually) simple differential equation.





| $^{3}_{1}H$                    | 12.3 y                         | <sup>235</sup> <sub>92</sub> U  | $7.1 \times 10^{8}$ y |
|--------------------------------|--------------------------------|---------------------------------|-----------------------|
| <sup>14</sup> <sub>6</sub> C   | $5.73 \times 10^{3} \text{ y}$ | <sup>238</sup> <sub>92</sub> U  | 4.5×10 <sup>9</sup> y |
| <sup>15</sup> <sub>6</sub> C   | 2.4 s                          | <sup>137</sup> <sub>55</sub> Cs | 30.17                 |
| $^{40}_{19}$ K                 | 1.26×10 <sup>9</sup> y         | $^{131}_{53}$ I                 | 8.05 d                |
| <sup>90</sup> <sub>38</sub> Sr | 28.1 y                         | <sup>226</sup> <sub>88</sub> Ra | $1.60 \times 10^{3}$  |
| <sup>60</sup> <sub>27</sub> Co | 5.26 y                         |                                 |                       |

## 🛄 Example

Hydrogen peroxide decomposes into water and oxygen in a first-order process.

$$\mathrm{H}_{2}\mathrm{O}_{2}(aq) \rightarrow \mathrm{H}_{2}\mathrm{O}(l) + \frac{1}{2}\mathrm{O}_{2}(g)$$

At 20.0 °C, the ½-life for the reaction is  $3.92 \times 10^4$  seconds. If the initial concentration of hydrogen peroxide is 0.52 M, what is the concentration after 7.00 days (6.048 × 10<sup>5</sup> s)?































