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Monsanto’s Acetic Acid Synthesis
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Industrial carbonylation in the Ibuprofen
synthesis of Celanese
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In class assighment (01.26.2011)

A typical organic laboratory reaction is shown below, in which an aldehyde is reduced to an alcohol via a typical
reducing agent, namely lithium aluminum hydride.

XX o Li AlH,

normal addition OH

r

In this experiment, 5.8 g of LiAlH, was added into a flask, and to this was added 25 mL of THF (density 0.88 g/mL).
By use of an addition funnel, a solution of 10 g of cinnamaldehyde (reactant shown above) in 75 mL of THF
was dropped into the lithium aluminum hydride solution and gently heated to a reflux.

After mixture of these reactants, the solution was cooled and 12 mL of aqueous sodium sulfate (let’s just use
water density of 1 g/mL, as the solubility of sodium sulfate at cool temperatures is near 12 g/100 mL). 95 mL
of dilute sulfuric acid was then added (use the density of water again), and the layers were separated and
extracted by 120 mL of diethyl ether (density 0.7134 g/mL). Assume a 90% product yield.

(Source: http://www.ch.ic.ac.uk/local/organic/16.html)

Convert all mL to g and evaluate the following factors:
a) Total Atom Economy of the reaction as shown in the above scheme
b) E-factor of this synthetic route
c) Q-factor of this synthetic route


http://www.ch.ic.ac.uk/local/organic/16.html
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Electron-Counting Rules

Neutral Negative Ligand L
1 2 alkyl, aryl, hydride, halide (X)
2 - ethylene, monoolefin, CO, phosphine
3 4 p-allyl, NO
4 - diolefin
4 6 cyclobutadiene (C,H, or C,H,%)
5 6 cyclopentadienyl
6 - arene, triolefin

8 10 cyclooctatetraene (C4Hg or CgHg?)
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System Model used for the Life-Cycle Assessment

Petrochemical Waste
solvent proeduction Use of solvents

.| Waste solvent Option
incineration J'nc:ﬁneraﬁun

Steam Elactricity Fossil fuel

Waste solvent | | VWaste solvent ﬂpﬂﬂﬂ
distillation incineration EISHHE.' ﬁﬂ'n
s ¥ v v
-=======-Recoverad solvent Steam Electricity Fossil fue
Solvent Solvent Solvent = Solvent
production use recycling disposal

Fig. 1 System model of the solvent assessment using the life-cycle
assessment method.
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Table 1 Specification of solvent treatment processes used in this work. These assumptions reflect general conditions in the Swiss chemical industry
according to the opinion of an expert panel”!

Parameter Assumptions Comment

Incineration technology Hazardous waste incinerator Model description see ref. 19

Distillation technology Batch distillation Detailed description see ref. 20

Use of energy and ancillaries Average use batch distillation According to statistical analysis®®

Production of energy and ancillaries Average BEuropean production Data were taken from ref. 16

Solvent recovery Average solvent recovery of 90% According to the opinion of an expert panel®!

Residue treatment Incineration Most commonly used technology for organic solvents™
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Table 2 Results of the life-cycle assessment of the 26 organic solvents. The total CED of a treatment option is calculated based on these results:
CED (Option Distillation) = CED (Solvent Production) + CED (Solvent Distillation); CED (Option Incineration) = CED (Solvent Production) +
CED (Solvent Incineration)

Solvent production CED Solvent distillation CED Solvent incineration CED
Solvent CAS-No. per kg solvent/MI-eq. per kg solvent/MJ-eq. per kg solvent/MIJ-eq.
Acetic acid 64-19-7 559 —349 —15.5
Acetone 67-64-1 74.6 —53.6 —33.9
Acetonitrile 75-05-8 88.5 —79.6 =297
Butanol (1-) 71-36-3 97.3 —74.6 —39.9
Butyl acetate 123-86-4 121.6 —95.9 —34.1
Cyclohexane 110-82-7 83.2 —63.4 —53.5
Cyclohexanone 108-94-1 124.7 —99.7 —40.4
Diethyl ether 60-29-7 49.8 —-319 —40.2
Dioxane 123-91-1 86.6 —63.8 =276
Dimethylformamide 68-12-2 91.1 —67.6 —25.9
Ethanol 64-17-5 50.1 -31.2 —31.7
Ethyl acetate 141-78-6 95.6 =720 =276
Ethyl benzene 100-41-4 85.1 —64.9 —49.8
Formaldehyde 50-00-0 493 —28.8 —-159
Formic acid 64-18-6 73.9 —50.1 —4.7
Heptane 142-82-5 61.5 —43.7 —54.5
Hexane 110-54-3 64.4 —46.7 —55.2
Methyl ethyl ketone 108-10-1 64.2 —44.6 —37.6
Methanol 67-56-1 40.7 —21.7 —22.2
Methyl acetate 79-20-9 49.0 —29.2 —22.8
Pentane 109-66-0 73.2 —54.5 —553
Propyl alcohol (n-) 71-23-8 111.7 —87.3 —36.5
Propyl aleohol (iso-) 67-63-0 65.6 —46.1 —36.5
Tetrahydrofuran 109-99-9 270.8 —230.7 —37.5
Toluene 108-88-3 80.0 —60.0 =493

Kylene 1330-20-7 725 —53.1 —49.9
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EHS assessment of organic solvents
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Fig. 2 Results of the EHS method for the 26 pure organic solvents (step (1) in the framework for the assessment of green solvents). The EHS result

score is composed of environmental indicators (water and air hazard, persistency), as well as indicators for health (chronic and acute toxicity and
irritation) and safety (reaction/decomposition, fire/explosion, release potential) hazards. The results were calculated using the EHS-Tool.*



ﬁ - TEXAS A&M

UNIVERSITY

Life-cycle assessment of organic solvents
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Fig. 3 Life-cycle assessment of the treatment options, incineration
and distillation, for the 26 solvents (step (2) in the framework for the
assessment of green solvents). Tetrahydrofuran is out of range (CED
of 40.1 {(distillation) and 233.4 (incineration) MJ-eq.). The results were
calculated using the Ecosolvent-Tool !



Combination of the EHS and LCA method

EHS Indicator Score
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Fig. 4 Environmental assessment of the 26 organic solvents: combi-
nation of the EHS method with the LCA method (step (3) of the
framework for the assessment of green solvents).



Table 3 The 5 binary solvent mixtures and their varying compositions investigated in the case study. Data were taken from Bentley ef af."

Mixture name (% v/v) main
component/secondary component

Solvent composition/kg

Product selectivities at 25 °C (dominating product)
as reported in Bentley et al

Option 1: methanol-water
MeOH H,O0 (90%)
MeOH H,O0 (10%)

Option 2: ethanol-water
EtOH H,O (90%)

EtOH H,O (10%)

Option 3: methanol-ethanol
MeOH EtOH (80%)
MeOH EtOH (20%)
Ouption 4: n-propyl alcohol-water
n-PrOH H,O (90%)
n-PrOH H,0 (10%)

methanol (0.71), water (0.29)
methanol (0.08), water (0.92)

ethanol (0.71), water (0.29)
ethanol (0.08), water (0.92)

methanol (0.63), ethanol (0.37)
methanol (0.16), ethanol (0.84)

r-propyl alcohol (0.72), water (0.28)
n-propyl alcohol (0.08), water (0.92)

1.36 1.39 (ester product)
1.28 1.40 (ester product)

0.55 0.71 (acid product)
0.78 0.80 (acid product)

1.54 (ester product)
1.51 (ester product)

0.32 0.61 (acid product)
0.78 0.82 (acid product)
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EHS assessment case study
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Fig. 5 EHS assessment of the 5 solvent mixtures of the case study at
different shares of main and secondary component (step (1) in the
framework for the assessment of green solvents). The results were
calculated using the EHS-Tool. ™



Life-cycle assessment of the case study
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Fig. 6 Life-cycle assessment of the treatment options, mcineration

and distillation, for 5 solvent mixtures (step (2) in the framework for
the assessment of green solvents). The values were calculated using the

Ecosolvent-Tool >
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Case Study: Combination of the EHS and LCA method
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1. The EHS indicator scores of methanol and dioxane are
2.7 and 5.00, respectively. What is the meaning of these
indicators?

2. On the other hand, their life-cycle assessment scores
based on cumulative energy demands (CED) can be
calculated from their solvent production (CED) in kg/m;-
e,. of 40.7 and 86.6, solvent distillation (CED) of -21.7
and -63. 8, and solvent incineration (CED) of -22.2 and -
27.6 vaIues for methanol and dioxane, respectively.

What are their life-cycle assessment vaIues?

3. Which is the greener solvent? Why?
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Figure3.2 The main eIementary steps in homogeneous catalysis.
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no access to
. the Ni center

Figure 3.17 Schematic drawing and 3D structure of Ni[P(Ph);]a,
also showing the reaction pocket created by the dissociation of
one of the triphenylphosphine ligands.
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Figure3.18 a Schematic drawing and space-filling model showing
the calculation of the cone angle for symmetric and nonsymmetric
ligands; b examples of some ligands with their respective cone
angle values,
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Figure 5.8 Rhodium-catalyzed hydroformylation of propene (L = PAr3).
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Figure 4.24 a A general process schematic for aqueous blphasm

catalysis, and examples of water-soluble phosphine ligands; b the
catalytic cycle for the Ruhrchemie/Rhéne-Poulenc
hydroformylation of propene.
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Figure 8.7. Ruhrchemie/Rhéne-Poulenc process
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Figure 8.5. LPO process scheme with removal of product in liquid phase
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Figure 3.29 a Two examples of nickel catalyst precursors,
highlighting the “chelate part” and the “organic part”; b a
simplified catalytic cycle for the SHOP oligomerization step {the
reverse reaction arrows are omitted, for clarity).
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() Pg2* + H,0 + CHy=CHy ——= Pd0 + 2H"+ CHyCH=0)
The three
Pd° + 2Cu®* —— Pd?* + 2Cu* S redox
processes
2Cu* + 2H* + 1/20, —— 2Cu?*+ H,0 |
(b) _ -
CH,=CH, + 1/20, ——» CHyCH=0
() H,0 + CH,=CH, 1/20,

X ZCU+ + 2H X
CH;CH=0 Pd? + 2H+X

Figure 3.30 a The three stoichiometric redox reactions and b the
net reaction of the Wacker oxidation system; c a simplified
representation of the Pd and the Cu catalytic cycles (the “reverse
reaction” arrows are omitted, for clarity).
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Figure 3.31 Simplified schematic of the palladium Wacker
catalytic cycle for oxidizing ethene to acetaldehyde (the “reverse
reaction” arrows are omitted, for clarity). The broken circles
represent the copper and oxygen redox cycles.
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Figure 4.26 a Temperature-controlled mixing and separation of
fluorous and organic phases; b its application in nickel-catalyzed
oxidation of aldehydes by Klement et al.
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Olefin Isomerization Mechanism Kl aatess
Hydride Addition-Elimination

e SN P Ayl
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H_DALH "//\\/X HCO(CO)4
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Calculating Molecular Weights A | TEXAS M

(number average molecular weight)

Total Mass of Each Type of

Number of Molecules, N;  Mass of Each Molecule, M, Molecule, N;M;
1 800,000 800,000
3 750,000 2,250,000
5 700,000 3,500,000
8 650,000 5,200,000
10 600,000 6,000,000
13 550,000 7,150,000
20 500,000 10,000,000
13 450,000 5,850,000
10 400,000 4,000,000
8 350,000 2,800,000
5 300,000 1,500,000
3 250,000 750,000
1 200,000 200,000

Total Mass = NiMi = 50,000,000



Calculating Molecular Weights A | TEEAS 200

(weight average molecular weight)
Total Mass of

Number of Mass of Each Weight Fraction
Molecules Molecule poct Type of Molecule
Type of Molecule
(N) (M) (N:M) (NM/NM) (W,M,)
1 800,000 800,000 0.016 12,800
3 750,000 2,250,000 0.045 33,750
5 700,000 3,500,000 0.070 49,000
8 650,000 5,200,000 0.104 67,600
10 600,000 6,000,000 0.120 72,000
13 550,000 7,150,000 0.143 78,650
20 500,000 10,000,000 0.200 100,000
13 450,000 5,850,000 0.117 52,650
10 400,000 4,000,000 0.080 32,000
8 350,000 2,800,000 0.056 19,600
5 300,000 1,500,000 0.030 9,000
3 250,000 750,000 0.015 3,750
1 200,000 200,000 0.004 800

Weight Average Molecular Weight = W,M. = 531,600
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Chemical Route to Lactic Acid
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Fermentation Route to Lactic Acid

Corn starch Carbon

l l > Acid

AR RE R
A A A A A

l.:' o
o> &
2 o4
P 2
! O
= —_— N —= o
) ]
s >
T T l Ca lactate solution - .
Lactobacill 'echnical
ictobacillus : .
! " CaCOs ) lactic acid
acidophilus ' Solid waste
Fermentation Ca salt formation  Filtration Evaporation

4—6 days 10% actives



Comparison of Renewable and Ape | TRaAS A
Non-Renewable Routes to Lactic Acid

Parameter Renewable Non-renewable

Energy use High Lower

Hazard potential Low High

Waste generation High Low

Nature of waste Benign Non-benign contamination possible?
Feedstock Renewable Non-renewable

Plant size Larger Smaller
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