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Statistical Thermodynamics

Statistical thermodynamics provides the link between the microscopic (i.e., molecular) properties of matter
and its macroscopic (i.e., bulk) properties. It provides a means of calculating thermodynamic properties
from the statistical relationship between temperature and energy.

Based on the concept that all macroscopic systems consist of a large number of states of differing energies,
and that the numbers of atoms or molecules that populate each of these states are a function of the
thermodynamic temperature of the system.

One of the first applications of this concept was the development of the kinetic theory of gases and the
resulting Maxwell-Boltzmann distribution of molecular velocities, which was first developed by Maxwell in
1860 on purely heuristic grounds and was based on the assumption that gas molecules in a system at thermal
equilibrium had a range of velocities and, hence, energies.

Boltzmann performed a detailed analysis of this distribution in the 1870’s and put it on a firm statistical
foundation. He eventually extended the concept of a statistical basis for all thermodynamic properties to all
macroscopic systems.



Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases
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Statistical Thermodynamics
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Figure B.4 The Boltzmann distribution of populations for a Figure B.3 The energy level separations typical of four types of

system of five energy levels as the temperature is raised from system. (1zJ=107?'J;in molar terms, 1zJ is equivalent to about

zero to infinity. 0.6kJmol.)



Statistics and Entropy

. Macroscopic state ;- state of a system

I IS established by specifying its T, E ,S ...
ﬂ “ Microscopic state :- state of a system Is

established by specifying X, p, ... of Ind.
j “ constituents
More than one microstate can lead to the
N | same macrostate.
Ul Example: 2 particles with total E = 2
Can be achieved by microstates 1, 1 or
Figure 15A.1 Whereas a configuration {5,0,0,...} can be 20 or0, 2

achieved in only one way, a configuration {3,2,0,...} can be
achieved in the ten different ways shown here, where the

«l=

ok

Configuration:- The equivalent ways to

tinted blocks represent different molecules. aChieV? a state _ _
W (weight):- The # of configurations
(Assumes that the five molecules are distinguishable.) comprising a state

Probability of a state:- # configuration
In state / total # of configurations



Weight of a Configuration

N=18 NI

W =
N ININGIN, T
|
INW =1In N
N TN, INGINGTL .
=INNT—In N IN,IN,IN,!...
3! 6! 51 4!

=InN==>"InN;!
|

Figure 15A.2 The 18 molecules shown here can be
distributed into four receptacles (distinguished by the Using Sterling’s Approximation:
three vertical lines) in 18! different ways. However, 3! of the In N!' ~ N In N — N, which is valid for N » 1,
selections that put three molecules in the first receptacle
are equivalent, 6! that put six molecules into the second
receptacle are equivalent, and so on. Hence the number
of distinguishable arrangements is 18!/3!6!5!4!, or about
515 million.

INW ~NInN-> N;InN,



Undetermined Multipliers (Chemist’s Toolkit 15A.1)

Global maximum in f when df =0 df =

* Since g(x,y) is constant dg =0 and: dg =
Y
- dx = > dy
e This defines (@j and
X

o
* Defines undetermined multiplier /4 = ﬁ
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Same as getting unconstrained maximum of

Eliminating dx or dy from the equation for df: df :L
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Seek a maximum in f(X,y) subject to a constraint defined by g(x,y) =0
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Example of Undetermined Multipliers

A rectangular area is to be enclosed by a fence having a total length of 16
meters, where one side of the rectangle does not need fence because it is X WL
adjacent to a river. What are the dimensions of the fence that will enclose

the largest possible area?

Thus, the principal (area) function is: F(X,y) = xy (1)
and the constraint (16 meters) is: f(x,y) =2x+y—16=0 (2)

If F(X,y) were not constrained, i.e., if x and y were independent, then the derivative (slope) of F would be zero:

dF(x,y)=Z—idx+%dy:O 3)

oF oF
Fo m (5] @

However, this provides only two equations to be solved for the variables x and y, whereas three equations must
be satisfied, viz., Egs. (4) and the constraint equation f(x,y) = 0.

and



Example of Undetermined Multipliers

The method of undetermined multipliers involves multiplying the constraint equation by another quantity, A,
whose value can be chosen to make x and y appear to be independent. This results in a third variable being
Introduced into the three-equation problem. Because f(x,y) = 0, maximizing the new function F”’

F(xy) = F(xy) + A1(x)y) ()
IS equivalent to the original problem, except that now there are three variables, x, y, and A, to satisfy three
equations:
(aij =0 oF =0 and f(x,y)=0 (6)
OX oy
Thus Eg. 5 becomes
F'(xy) = xy + 4 (2x +y -16) (7)

Applying Egs. (6),

(aaij:y-FZﬂ:O p— y:—ZZ (%]:X+ﬂ,:0 — X:—ﬂ, 2X+y—16=—21—21—1620
X

yielding A = —4, which results in X =4 and y = 8. Hence, the maximum area possible is A =32 m?.



Example of Undetermined Multipliers

(2 2
Find a maximum of f(X, y) — e (X +y ] SubjeCt to the constraint g(X’ y) =X+ 4y -17=0
of of (2 \,2 (2 \2
From slope formula df = (&j dx + (gyj dy =0 df =—2xe (*+y )dx +-2ye (< )dy =0
y X

Global maximum: x =y =0 Need to find constrained maximum

+ Find undetermined multiplier K(x,y) = f(X,y)— Ag(X, y) = o ) A(x+4y—17)

* An unconstrained maximum in K must % - _er—(x2+y2)_ A=0 A ==2x
K oy ) _45 —0 A=-3

o This implies 2X= % 4x=y i

« Original condition g =0 g(x,y)=x+4(4x)-17=0

e Constrained maximum : x=1;y=4



Most Probable Distribution

Total energy: E = z N; €; Total number of particles: N = z N;
i l

N!
Ny!N,!N,! ..

Configurations: W =
(permutations)

Example: N =20,000; E = 10,000; three energy levelse; = 0,6, = 1,€3 = 2.
Constant E requires that N, + 2N; = 10,000; constant N requires that N, + N, + N; = 20,000
0 <N;<3333; W is maximum when N, ~1300.

Maximum probability (and, hence, maximum entropy) occurs when each particle is in a different energy level.
But minimum energy occurs when all particles are in the lowest energy level. Thus, must find the maximum
probability that is possible, consistent with a given total energy, E, and a given total number of particles, N.

This is an example of a classic problem, in which one must determine the extrema (i.e., maxima and/or
minima) of a function, e.g. entropy, that are consistent with constraints that may be imposed because of other
functions, e.g., energy and number of particles. This problem is typically solved by using the so-called

LaGrange Method of Undetermined Multipliers.






Most Probable Distribution

The most probable distribution is the one with greatest weight, . Thus, must maximize In/. Because there

are two constraints (constant E and constant N), must use two undetermined multipliers: g(x.) =0 and h(x,) =0
so K = (f+ ag +h)

* Use this to approach to find most probable population: K =InW+ a[N ~YN j) + ﬂ[E - ¥ N; gj]
J j

(constant N)  (constant E)

Want constrained maximum of InW (equivalent to unconstrained maximum of K)

* Use Stirling's Approximation for InW: ~ K=NInN -3 N;jIn N; + a(N - Nj) +,B(E —> Njgj)
] ] ]

Can solve ngle population N, (all others 0 —x=0  MNi_g  Nj_,
an solve for any single population N; (all others 0): oN; oN; = a—i_
oK 1 oK

(a—Nij:—(|ﬂNi+Ni-N—i)+OL(—1)—B(8i):O [a—Nij=—|nNi—1—OL—B€i=o

In Ni = —(1-|— 0()—,36]



Boltzmann Distribution

In N; = -1+ a) - B If A=exp|—(1+ )], then N; = Ae P4
_ —Pei
* A(a)can be elimmated N = Nj = Ade P A= N ~pe, N; = Ne
by introducing N: j j %e > e_ﬂ &]
1 ,
Boltzmann Temperature (will prove later) #= m J
i
Nl e_ KpT
e Pi=— = s
Boltzmann Distribution N e %bT
J
For relative populations: Ni/Nj — o Blei—gj) = o—(ei—gj)/kT

Gives populations of states, not levels.
If more than one state at same energy, must account _ —B(&i—€;
for degeneracy of state, g;.



Most Probable Distribution

In summary, the populations in the configuration of greatest weight, subject to the constraints of fixed E and N,
depend on the energy of the state, according to the Boltzmann Distribution:

The denominator of this expression is denoted by g and is called the partition function, a concept that is
absolutely central to the statistical interpretation of thermodynamic properties which is being developed here.

As can be seen in the above equation, because k is a constant (Boltzmann’s Constant), the thermodynamic
temperature, T, is the unique factor that determines the most probable populations of the states of a system that is

at thermal equilibrium.



Most Probable Distribution

If comparing the relative populations of only two states, ¢; and g;, for example,

The Boltzmann distribution gives the relative populations of states, not energy levels. More than one
state might have the same energy, and the population of each state is given by the Boltzmann
distribution. If the relative populations of energy levels, rather than states, is to be determined, then
this energy degeneracy must be taken into account. For example, if the level of energy s; is g;-fold

degenerate (i.e., g; states have that energy), and the level of energy ; is g;-fold degenerate, then the
relative total populations of these two levels is given by:




Example Partition Function: Uniform Ladder

3¢
2¢
£

0

Figure 15B.1 The equally-spaced infinite array of energy
levels used in the calculation of the partition function.
A harmonic oscillator has the same spectrum of levels.

g=1+ePe+e 2P ye 3P ...

g=1+ePe+ (e‘ﬁg)2 +(e‘38)3 + -

Partition function, g
o

——

0 5 10
Temperature, kT/e

0

Figure 15B.2 The partition function for the system
shown in Fig. 15B.1 (a harmonic oscillator) as a function of

temperature.

1
1—x

=1+x+x%+x3+-

B 1
cl_l—e‘ﬁ'g




Example Partition Function: Uniform Ladder

Low High Because the partition function for the uniform ladder
temperature temperature of energy levels is given by:
1 1
Tller T =
1_e KT

then the Boltzmann distribution for the populations in
this system is:

.. B Ni e_ﬂgi -Be\a—Péi _% _kg_':'
Be: 3.0 1.0 0.7 0.3 Pi= " =(1-e"")e ™ =(1-e*)e
1.05 1.58 1.99 3.86 g
Figure 15B.4 The populations of the energy levels of the Fig. 15B.4 shows schematically how p; varies with

system shown in Fig.15B.1 at different temperatures, and the ~ temperature. At very low T, where q = 1, only the

corresponding values of the partition function as calculated lowest state is significantly populated. As T increases,

from eqn 15B.2b. Note that = 1/kT. higher states become more highly populated. Thus,
the numerical value of the partition function gives an
indication of the range of populated states at a given T.



Two-Level System

For a two-level system, the partition function and
corresponding population distribution are given

by: e
g=1+e 7 =1+e ¥
and &
) - e—ﬁgi ~ e_ﬂgi ~ g kT
= — =
1+e™7 £
1 1+e KT

Partition function, g
M

1.4 2

Yam

0 0.5 1T O 5 10
Temperature, kT/e Temperature, kT/e

Figure 15B.3 The partition function for a two-level system
as a function of temperature. The two graphs differ in the
scale of the temperature axis to show the approach to 1 as
T—0and the slow approachto 2as T— e,



Two-Level System

In this case, because there are only two levels T
and, hence, only two populations, p, and p;,
and because g, = 0 and ¢; = 1, then
1 1 =
pO = i = £ =
1+ e _ﬁ s 05
1+e€ a 7,
O
o
and &
e_ﬂg e KT
b=y ~ ‘
T 0 0
1+e KT 0 0.5 10 5 10

Temperature, kT/e Temperature, kT/e

At T =0K, q =1, indicating that only one state

: : . : Figure 15B.5 The fraction of populations of the two stat
is occupied. With increasing temperature, g 'gure e fraction of populations of the two states

of a two-level system as a function of temperature (eqn

appr(I)IaCheS OI'5’ Eg[ Whr:Ch pomt bt())th Stateslgred 15B.4). Note that as the temperature approaches infinity, the
equally populated. Thus, It can be generalize populations of the two states become equal (and the fractions
that as T — oo, all available states become both approach 0.5).

equally populated.



Generalizations Regarding the Partition Function

Conclusions regarding the partition function:

 Indicates the number of thermally accessible states in a system.

* AsT — 0, the parameter B = 1/KT — oo, and the number of populated states — 1, the lowest (ground)
state, I.e., m 4 =90, where g, is the degeneracy of the lowest state.

* AsT — oo, each of the terms 3 = &/KT in the partition function sumze_ﬂg—> 0, so each term = 1.

Thus, lim g =0, since the number of available states is, in general, infinite.

T—ow

« In summary, the molecular partition function g corresponds to the number of states that are thermally
accessible to a molecule at the temperature of the system.



Contributions to Partition Function

Total energy of a molecule is the sum of the contributions from its different modes of motion
(translational, rotational, vibrational), plus its electronic energy:

T R 14 E
g, =¢&;, +&;+¢&; +¢&;

Thus, the partition function for the molecule consists of the product of the components from each
of the four individual types of energy:

9=9q9 -9 -q9 -(g

() () () ()

g: degeneracy of the corresponding energy level



Translational Partition Function

. Translational energy levels are very closely spaced, thus, at normal

temperatures, large numbers of them are typically accessible.

Assume that gas Is confined in a three-dimensional volume.
Quantum states can be modeled by a particle in a 3D box with side
lengths a, b, and c: -
2142 2112
n’h* n,h°  n’h
E(n,n,n)=—2—+—"—+ 1
8ma® 8mb° 8mc

. The translational partition function for a single molecule is

T 001 001 001 8mkT a2 b2 C2
g = €
n,=l1 n,=1 n,=1
h? | ng h? | ny h? | nZ
0 - — o0 - — o0 — £
8mkT | a2 8mkKT | b? 8mkT | ¢2
-3 e LS e
n =1 nzzl

b e e e e e e e e o e e e e

x/a

=Ug

cBW8/yu



Translational Partition Function

For a system having macroscopic dimensions, the summations can be replaced by integrals:

h? n? h2 n h? n?
T o0 - _2 o0 - _2 00 - _2
q zJ‘ e BMKTa’ e 8MKTb? 4 e 8MKT <’ o
n,=0 n, =0 y n,=0

The above definite integrals evaluate to:

o0 1/2
/ e~ dyp = 1 (z)
0 2 \«

Thus,
0 2rmkT \ /? 2rmkT \ /> 2rmkT \ /2 2rmkT\ */?
q = a 72 b h2 " C h2 =V h?
If the thermal de Broglie wavelength, A, Is defined as A = , then
Y V2rmkT
.
N

where A has units of length, and g" is dimensionless.



Translational Partition Function

Example: Calculate the translational partition function for an O, molecule ina 1 L vessel at 25°C.

h 6.626x107>* Jxs

B (27mkT)"?  (2x 77 x32 amu x1.67 x107%" kg/amu x1.38 x 102 J/K x 298K)"2
21.78X10_11m =17.8 pm

q = vV 1x10°m’
A° (L.78x107)°m’

=1.77x10%

Thus, under these conditions, an O, molecule would have ~102° quantum states thermally accessible to it.
The thermal wavelength of the O, molecule (A = h/(2emkT)Y?) is ~18 pm, which is ~eight orders of
magnitude smaller than the size of the containing vessel.

In order for the above equation for q' to be valid, the average separation of the particles must be much
greater than their thermal wavelength. Assuming that O, molecules behave as a perfect gas at 298K and
1 bar, for example, the average separation between molecules is ~3 nm, which is ~168 times larger than
the thermal wavelength.



Translational Partition Function

As seen by its definition:

/
.Yy, (22mkT )™

TN h?

the three-dimensional translational partition function increases with the mass of the particle, as m32, and
with the volume, V, of the container.

For a given particle mass and container volume, qT also increases with temperature, as T32 because an
Infinite number of states becomes accessible as the temperature increases:

QT > as T —



Rotational Partition Function for Diatomic Molecules

The rotational energy of a rigid rotor is Substituting to eliminate r and r,
~ J(J + 1)A? T mumaR? _ 2
FEroy = 2] _1'1'11"'1'112_l‘l
_ _ where W is called the “reduced
where J is the rotational quantum number mass.”
(0, 1, 2,...) and | is the moment of inertia.
E
A gz
The rotational partition function for a linear
molecule is thus
Bt o JUFDR? & )
gk = Eg] e kT = 2(2] 4+ 1)e 8n2lkT = Z(zj + 1)eBheBIU+1D)
where the rotational constant B is given by: B = h/4mcl _ J=0




Rotational Partition Function for Diatomic Molecules

For molecules with large moments of inertia or at sufficiently high temperature, the above sum
approximates to I3+’ KT 1

. 2
qR :J' (ZJ _|_1)e 872 1kT dJ — (2J _I_l)e—ﬁthJ(J+1)dJ _ 87 : _ _
° h BhcB

. 8T 1
In general, q = oh?  oBhcB

where o IS the symmetry number:

— o =1 for heteronuclear diatomic molecules
— o =2 for homonuclear diatomic molecules

The temperature above which the approximation shown above for gR is valid is termed the
characteristic rotational temperature, 88, which is given by: 8% =hcB /K.

At sufficiently high temperatures (T » 0R), the rotational partition function for linear molecules is:
-
o6"




Rotational Partition Function for Diatomic Molecules

Table 15B.1* Rotational temperatures of diatomic molecules

OR/K
'H, 87.6
IH35C] 15.2
UN, 2.88
5Cl, 0.351

* More values are given in the Resource section, Table 12D.1.



Rotational Partition Function for Diatomic Molecules

w

— Contribution to g
M

o 1 2 3 4 5 6 7 8 9 10
Quantum number, J

Figure 15B.6 The contributions to the rotational partition
function of an HCl molecule at 25°C. The vertical axis is
the value of (2J+1)e-#h®/U+) Syccessive terms (which are
proportional to the populations of the levels) pass through
a maximum because the population of individual states
decreases exponentially, but the degeneracy of the levels
increases with J.



Rotational Partition Function for Polyatomic Molecules

The rotational energy of linear polyatomic molecules is the same as for diatomics, with o = 1 for
nonsymmetric linear molecules (HCN) and 2 for symmetrical molecules (CO,).

General polyatomic molecules may have 3 different values of I (moments of inertia), and so have 3
different rotational temperatures.

— If symmetries exist, some of the moments of inertia may be equal.
1
7'[1/2 T3 /2 0 hz
- A~
1rot="5"10,0,0, 821,k

: L. Table 15B.2* S t b f molecul
* The symmetry number, o, Is the distinct apie YMMELTY RUMBETS ofmolecules

number of proper rotational operations, plus
the identity operator, i.e., the number is the
number of indistinguishable positions in

space that can be reached by rigid rotations. 1! l
NH; 3

C.H, 12

H, 2




Origin of Symmetry Numbers

Quantum mechanical in origin, viz., the Pauli principle forbids
occupation of certain states.

e.g. H, occupies only even J-states if the nuclear spins are paired
(para-H,) and only odd J-states if the spins are parallel (ortho-H,).
Get about the same value as if each J term contributed only half its
normal value to the sum. Thus, must divide by c=2.

Similar arguments exist for other symmetries, e.g. CO,:

Population

0 1 Rotational quantum number J

Population

Figure 15B.8 The values of the individual terms

(2 +1)e Pl contributing to the mean partition function
of a 3:1 mixture of ortho- and para-H,. The partition function
is the sum of all these terms. At high temperatures, the

sum is approximately equal to the sum of the terms over all 5 S -

. . b ti t J
values of J, each with a weight of 1. This is the sum of the otationalquaniim.nttubor
contributions indicated by the curve. Figure 15B.9 The relative populations of the rotational

energy levels of CO,. Only states with even Jvalues are
occupied. The full line shows the smoothed, averaged
population of levels.



Vibrational Partition Function

In the harmonic oscillator approximation, the vibrational

energy levels in a diatomic molecule form a uniform ladder Potential energy

separated by Aw (= hcv). . '0:"; 5
<KX

Thus, using the partition function developed previously for a : \
uniform ladder (Example 15B.1): n=4

v 1 1 1 1 =\

q o 1_e—,88 o 1_e—ﬂhcfi - % o _ﬂ n=2 \
1_ e KT 1— e T n=1
] S _ n=0
Where 0V is the characteristic vibrational temperature, intemuclesr separalon X
given by -
_ hCV ® i ho = hv

9\/
‘ ‘&. h:h/Zn
»

At sufficiently high temperatures, such that T » 6V,

KT T x=0 represents the equilibrum
v separation between the nuclei.

hev 6

q



Vibrational Partition Function

In molecules having sufficiently strong bonds, e.g., C-H bonds (~1000 — 2000 cm-1), the vibrational
wavenumbers are typically large enough that fhcy >1 . In such cases, the exponential term in the
denominator of gV approaches zero, resulting in qV values very close to 1, indicating that only the zero-
point energy level is significantly populated.

By contrast, when molecular bonds are sufficiently weak that ghcy <<1, gV may be approximated by
expanding the exponential (e*=1+x+ ...):

. 1 1 1

T e T phert.) 1_@_@)
KT

Thus, for weak bonds at sufficiently high temperatures:
KT
V ~/

* Ther



Vibrational Partition Function

Table 15B.3* Vibrational temperatures of diatomic molecules

10

= 6'/K
-é H, 6332
-5 5 ‘H=Cl 4304
é N, 3393
nEi =Ll 805

1 * More values are given in the Resource section, Table 12D.1.

0 0 10

5
Temperature, kT/hcv

Figure 15B.11 The vibrational partition function of a
molecule in the harmonic approximation. Note that
the partition function is linearly proportional to the
temperature when the temperature is high (T> &").



Electronic Partition Function

10 }

1s+2s
. Except for hydrogen atoms, there are no simple formulas for
electronic energy levels from guantum mechanics. 8 |

. The partition function for electronic states is:

1s-1s

Energy [/ eV

qE — z gie_ﬁgi — goe_ﬁgo _|_ gle_ﬁgl _|_ oo

levels

. Because the first excited electronic state is typically well
above the ground state, i.e., e — &y > KT, only the ground 0

1s+1s
state is populated. \ /
-2 | =3

: : : : ~
. Exceptions are molecules with low lying electronic states, =
SUCh as NO, N02 and 02- T - Rotational levels

v=()

0.1 0.2

r/nm

Electronic, Vibrational and Rotational energy
levels for the hydrogen molecule.



Example of Low Lying Excited Electronic State

121.1cm™

N o

Figure 15B.12 The doubly-degenerate ground electronic
level of NO (with the spin and orbital angular momentum
around the axis in opposite directions) and the doubly-
degenerate first excited level (with the spin and orbital
momenta parallel). The upper level is thermally accessible at
room temperature.

w

Partition function, g*

2 Q \“/
5 10
0 Temperature, kT/e

Figure 15B.13 The variation with temperature of the
electronic partition function of an NO molecule. Note

that the curve resembles that for a two-level system
(Fig.15B.3), but rises from 2 (the degeneracy of the lower
level) and approaches 4 (the total number of states) at high
temperatures.



Mean Molecular Energy

For a system of non-interacting molecules, the mean energy of a molecule{&), relative to its ground state, is
just the total energy of the system, E, divided by the total number of molecules in the system, N:

E 1
— ——9SN'N.
(€)= NN &
Because, as shown previously, the overwhelmingly most probable population in a system at temperature T
is given by the Boltzmann distribution, (N, / N =e ™% / q), then (&) = %Zi ;e P& where g = 1/KT.
o(e™")

op

The latter relationship can be manipulated to express{&) in terms only of g by recognizing that gie‘ﬂgi —_

Hence, 1 oe™™) 10 pe | _ q
= QZ( o8 )V‘ qaﬁ(ze jv_ (@ﬁj

where the partial derivatives recognize that g may depend on variables (e.g., V) other than only T. Because
the above expression gives the mean energy of a molecule relative to its ground state, the complete

expression for{g) is:
(&) =¢, __(aﬁj _ggs_(alnCIj

o op

This result confirms the very important conclusion that the mean energy of a molecule can be calculated
knowing only the partition function (as a function of temperature).



Mean Molecular Energy

Comparison of the fraction of populations vs. the total energy of a two-level system.

0.5
= 0.4
) 7 <
S 0 o
5 0.5 0.5 > 0.2
2 5
g. p1 c
a o 0.2
0 0 | 0 0 : !
0 0.5 1 0 5 10 0 0.5 1T 0 5 10
Temperature, kT/¢ Temperature, kT/¢ Temperature, kT/e Temperature, kT/e

Figure 15C.1 The total energy of a two-level system

Figure 15B.5 The fraction of populations of the two states
(expressed as a multiple of Ne) as a function of temperature,

of a two-level system as a function of temperature (eqn

15B.4). Note that as the temperature approaches infinity, the on two temperature scales. The graph on the left shows the

populations of the two states become equal (and the fractions slow rise away from zero <Ieidy atlow temperatgres; the

both approach 0.5). slope ofthe graph at T=0is 0. The graph on the right shows
the slow rise to 0.5 as T— « as both states become equally

populated.



Translational Energy

Each of the three modes of motion (translational, rotational, and vibrational), as well as the potential energies
represented by the electronic state and electron spins, contributes to the overall mean energy of a system.

Translational Contribution:

As developed previously, for a three-dimensional container of volume V, the translational partition

function is given by
3/2

312
SRR\
A h{ B h
where A3 is essentially a constant multiplied by p32. Thus, (6T = — 1 (GqT j _ A° ( oV J
q'\ 98 ), V 0B A),
3/2
_ Cxp <V x d 1
\Y dg\ Cx B%*

. . o 1 =— %2 d ( 1 j:izﬁ
In one dimension, (¢ >:§kT dg\ g% ) 28 2



Rotational Energy

As developed previously, the rotational partition function for a

linear molecule is given by: .
J(J+1)h? ) S
qR _ Z (23 _|_1)e 87°IKT  — Z (ZJ _|_1)e—ﬂthJ(J+1) f; 1
i i >
At sufficiently low temperatures, such that T < 6% =hcB/k , 20.5
the term by term sum for a non-symmetrical molecule gives =
qR _ 143 2B | pa6phcB | 0! |

Temperature, 776"

Taking the derivative of qR with respect to B gives Figure 15C.2 The mean rotational energy of a non-

d R symmetrical linear rotor as a function of temperature. At high
g — _heB —2 BhcB —6 ShcB temperatures (7> 0%), the energy is linearly proportional to the
d =—hcB (6e +30e T ) temperature, in accord with the equipartition theorem.

Hence,

(6% — 1 dg® hcB(6e 2™ +30e " 1) /
q° dp 1+3e2/"8 | 5goshet |




Rotational Energy

At high temperatures (T >> 0R),

qR: T = 1
o0  ofhcB
Thus, daR q
R 1 dg ! 1
= =— B
a7 dﬂ(crﬂthj
P S e



Vibrational Energy

As developed previously, the vibrational partition function 10
for the harmonic oscillator approximation is:

v 1
- 1 — @ Aher

q

Because gV is independent of volume it can be differentiated
with respect to p:

dq" d( 1 j hcre 7"

Mean energy, (¢')/hcv
o

o

(/ 5 10

= (1 B e—ﬂhCV )2 0 Temperature, 776"

Figure 15C.3 The mean vibrational energy of a molecule in the

ju— ~ h —
dg  dp\1-e
: .. harmonic approximation as a function of temperature. At high
and since the mean energy<5> IS gIven by temperatures (T> 6Y), the energy is linearly proportional to the

V ~  _ Bher ~ _ Bher temperature, in accord with the equipartition theorem.
1 dg hcve ™™™ hcve 7™

Vi _ — phcv
g'y=———=(1-¢ - 5
(") q" dg ( ) (1—e )  1—e "  Athigh temperatures, T >> 6V = hc¥/k, so

then hep (6V) = hev hcv 1 T
<8V>=# © _eﬁhﬁ—1_(1+,8hc17+-~)—1~,8_
eﬂhCV _1

However, because most values of 6V are very high,
(> 1000K) this condition is seldom satisfied.



Equipartition of Energy

Degrees of freedom receive equal amounts of energy,

each of 12 kT.

In diatomic molecules at sufficiently high temperature:

4

— 3translational degrees of freedom = 3/2 kT AL U] =
— 2 rotational degrees of freedom = kT /.__._-,_//] Lo UL
— vibrational potential and kinetic energy = kKT €, A Rotation

At sufficiently low temperatures, only the ground state R o l ar
Is significantly populated. This causes degrees of '

freedom to freeze out and not contribute to the heat Transaton

capacity. 06 50 100 200 500 1000 2000 500010,000

— This can be seen in the treatment of the vibrational
partition function, as well as in the two-level system

discussed previously.

— Note that the treatment of the rotational partition
function on the previous slides cannot predict the
freezing out of the rotational degrees of freedom,
because the energy levels were approximated as a

continuum using the integral.

Temperature (K)



Electronic & Electron Spin Energies

Electronic Energies

Because statistical energies are measured relative to the ground state, and only the ground
electronic state iIs usually occupied, then e
(e7)=0

and q- =1

Electron Spin Energies

An electron spin in a magnetic field 8 can have two possible energy states (e_,,, = 0 and £,/ =

2UrB) and ener iven b
ugB) gy g y By, = 2u5Bm,

where m, is the magnetic quantum number, and p is the Bohr magneton (e#/2m, = 9.274 x 1024 J/T).

The spin partition function is therefore ¢> = z e Ptms = 1 4 ¢~2PuBE

mg

and the mean energy of the spin is (¢5) = 2ugB/(e?P#8B + 1)



Internal Energy and the Partition Function

As described previously, the mean energy of a system of independent non-interacting molecules

IS given by:

®,

(&)= ——| =%
8ﬂ

where = 1/KT.

For a system containing N molecules, the total energy is thus N(¢&), so the internal energy U(T) is:

~N({Jdq dlng
U(T)=U(0)+N{(g)=U(0) Q(ﬁﬁj\, U (0) - N( Y )V

If the system consists of interacting molecules (e.g., a non-ideal gas), then the canonical partition

function Q must be used: |
olnQ
T)= —
HH=00 ( op jv




Heat Capacity and the Partition Function

Recall that the constant-volume heat capacity Is:

ou
Cv: a_T
V

As shown previously, the mean vibrational energy of a collection of harmonic oscillators is given by

hcv koV
)= a 7=
eT —1

where 8" =hcv / k is the characteristic vibrational temperature. Thus, the vibrational contribution to
the molar heat capacity at constant volume is

o NG i d 1 —R(ijz e/
Y 2
T (eH IT _l)

o dT dT %™ 1
or, expressed as a function of temperature:

9" 2 e—eV/2T 2
C/ =Rf(T), where Rf (T) = [—j ( _ j
’ T 1_6—9 IT




Heat Capacity and the Partition Function

If the derivative with respect to T is converted into a derivative with respect to B, then C, can be

expressed as . (&) 82Ing
ey =kt (5g) = - (55) =mes(Gt)

1

If T >> 6M, where 6M is the characteristic temperature of
each mode (9% =hcB/k and 6" =hcv/k ), then the
equipartition theorem can be applied. In this case, each
of the three translational modes contributes Y2 R. If the
rotational modes are represented by vR*, then vR* = 2 for
linear molecules and 3 for non-linear molecules, so the
total rotational contribution is %2 vR"R. If the temperature
is sufficiently high for vV* vibrational modes to be active,

o
ol

Molar heat capacity, C, /R

o

' . : : : * 0 0.5 , 1
then the vibrational contribution is vV*R. Thus, the total Temperature, 776
molar heat capacity IS: Figure 15E.1 The temperature dependence of the vibrational
. . heat capacity of a molecule in the harmonic approximation
CVm =15 (3 + IR+ 2 )R calculated by using eqn 15E.3. Note that the heat capacity is

within 10 per cent of its classical value for temperatures greater
*
In most cases, vV = 0. than 6.



Boltzmann equation:

where S is the statistical entropy, and W is the weight of the most probable configuration of the system.
The Boltzmann Equation is one of the most important relationships in statistical thermodynamics, and
the statistical entropy is identical to the thermodynamic entropy, behaving exactly the same in all

respects.

« As the temperature decreases, for example, S decreases because fewer configurations are consistent

Entropy and the Partition Function

S=kInW

with the constant total energy of the system.

e« AST—0,W—1,so0lnW =0, since only one configuration (viz., the one in which every molecule

IS In the lowest level) is consistent with E = 0.

e AsS— 0, T — 0, which is consistent with the Third Law of thermodynamics, I.e., that the entropies

of all perfect crystals approach zeroas T — O.



Entropy and the Partition Function

Relationship of Boltzmann Equation to the partition function

U(M)-U(0)

* For a system of non-interacting and distinguishable molecules,  S(T) = +NklIng

U()-U(o)

 For a system of non-interacting and indistinguishable molecules S(T) =

+NkIn—
(e.g., a gas of identical molecules), N

U()-U(o)

« For a system of interacting molecules, use the canonical partition S(T) = +NkInQ

function,



Entropy and the Partition Function

As shown previously, the total energy of a molecule can be closely approximated by the sum of
the independent contributions from translational (T), rotational (R), vibrational (V), and electronic
(E) energies. The total entropy can be similarly treated as a sum of individual contributions.

« For asystem of distinguishable, non-interacting molecules, each contribution has the form of
that for S(T) above:
M um-uE”
T

S(T) = + Nk Ing" (for M =R, V, or E)

 For M =T, the molecules are indistinguishable, so

um-v e FNkinZ
T N

S(T) =



Translational Entropy: The Sackur-Tetrode Equation

For a system consisting of a perfect monatomic gas, only translation contributes to the total energy
and molar entropy, which is described by the Sackur-Tetrode Equation:

V_e%2 (27mkT 3/2 5/2 5/2
SmZRIn( et (2] =Rln Vi =k In Vi

h? N, A A3

where A is the thermal wavelength (h/(2zmkT)¥? described previously, V,, is the molar volume, N, is
Avogadro’s Number, and R/N, = k.

RTe"? kTe™?
Since for a perfect gas V., = RT/p, then S, can be calculated from S, = RlIn = [=RlIn -
PN LA p°A

5/2
€

NN, A°

VeS/Z
NN A

3

Re-writing the Sackur-Tetrode Equation in the form: S =nR In[ ) =nRInaV, wherea=

shows that when a perfect monatomic gas expands isothermally from V; to V;, AS is given by:

\
AS =nRInaV, —nRInaV, = nRIan
which is identical to the expression determined from the thermodynamic definition of entropy.



Entropy: Rotational Contribution

At sufficiently high temperatures, where T > 6% (= hcB / k),

which is usually the case, then q® = kT / ochcB =T / 66%, and

the equipartition theorem predicts the rotational contribution 5
to the molar entropy to be RT. Therefore,

S: :Um_U(O)+RIan =R(1+In kT~j:R(1+In TRj
T ohcB o6

[a)

Ap prOXimate /

Exact

Entropy, S/Nk

—

Hence, this relationship indicates that

* The rotational contribution to the entropy increases with 0 : . .
Increasing T because more rotational states become Temperature, /6"
aCCGSSi ble Figure 15E.4 The variation of the rotational contribution to the

entropy of a linear molecule (o=1) using the high-temperature
approximation and the exact expression (the latter evaluated

« The rotational contribution will be large when the up to J=20).
rotational constant B is small because then the rotational
levels are more closely spaced.



Entropy: Vibrational Contribution

The vibrational contribution to the molar entropy, SV, , can be
obtained by combining gV (= 1/(1 - e ) with (') =&/ (e -1),
the mean vibrational energy:

U, -U_(0) N,k Be 1 ‘

+RlIn
e’ 1

SV

+RIng’ =

iy h / —phev
- R{eﬁ'fg_l—ln(l—e Z )}: R{e'fhcﬁcil—ln(l—e g )}

where the final equality occurs because & = hcv. :

e e

w

Entropy, S, /R
N

* Both terms in the right-hand equality approach O as T — 0, 0, ; 7
SO S — O at T — O Temperature, 7/6"
* Sincreases as T increases because more vibrational states Figure 15E.5 The temperature variation of the molar entropy
] of a collection of harmonic oscillators expressed as a multiple
become therma”y aCCGSSIble. of R=Nk.The molar entropy approaches zeroas T— 0, and

« AtagivenT, S is larger for higher M.W. molecules than for ~ increases withoutlimitasT— .
lower M.W. because their energy levels are more closely
spaced, and thus more are thermally accessible.



Derived Functions: Enthalpy and Gibbs Energy

Can use various thermodynamic relationships to calculate other quantities. In all of the equations below,
the canonical partition function Q is related to the molecular partition function g by Q = gN for
distinguishable molecules, and Q = gV/N! for indistinguishable molecules (e.g., as in a gas).

As shown previously, the internal energy and entropy are related to the partition function as follows:

dinQ U(T)—U(0
U(T) = U(0) - (—) sery = LD YO o
B/, T

The partition function also can be used to calculate the pressure, enthalpy, and Gibbs Energy:
alnQ alnQ

H=U-+PV H(T)=H(O)_(a/;) kTV(aV)T

alnQ
G=H—TS=A+PV G(T) = G(0) — lenQ+kTV( " )T
G(T) = G(0) — nRTln% (From Q = ¢V /N! and InQ = Nlnq — InN! and InN! = NInN — N)

G(T) = G(0) — nRTlndV—m

A



Contributions to Molar Thermcd:mﬂmic Prop&rﬁes of Ideal Gases

© 15 the relevant characteristic temperature, & 1s the symmetry number of the molecule, g1s the degeneracy of the state, 4 1s the single-molecule partition
function, Q) 1s the canomeal partition funcuon, and L 1s the dissociation energy. A symbol with a bar over 1t 15 a molar quantity. All other symbeols have
their standard meanings.
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Statistical Mechanical Relations for Ideal Gases

Rotation
Linear Nonhnear
Quantity Translation Vibration Molecules Molecules Electronic
: 3 : ' f2
27 mkT ) 1 T r Y
9 ( = } v ) e sexp(~Do/RT)
b 1—exp(-0,/T) r c9.0,0
2.2 2 32 2
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e i3 E = @ b _ 'E;_ , ete. Le
k& k£ k& 8mr-lk 8Tk k&
2 1 1 27+1 Vanes
Q=4"/N A=—kTIlnQ In Nl Nlan N-N

q= ZE; exp(—¢; / £T)



Equilibrium Constants

As shown previously, the equilibrium constant K of a reaction is related to the standard Gibbs
energy of reaction, A.G°, (p = 1 bar) by:

A,G° =—-RTInK
From statistical thermodynamics, the Gibbs energy is related to the molar partition function by:

O = 0/n and G(T) = G(0) — kTInQ+kTV (52)

In order to calculate a value for K, these equations must be combined. To develop an expression
for K, the standard molar Gibbs energy, G°/n, must be determined for each reactant and product in
the reaction. For the gas-phase reaction,

aA+bB —->cC+dD

It can be shown that the equilibrium constant is given by:

(qu / NA) (qu / NA) oMo /RT
(qu/NA) (qu/NA)




Equilibrium Constants

where A, E, is the difference in molar energies of the ground
states of the products and reactants and is calculated from the
bond dissociation energies of the various reaction species, i.e.,
D, (products) — D, (reactants).

Using the symbolism of (signed) stoichiometric numbers that
was introduced previously, K is given by:

q?,m ? ~A,E,IRT
Kz{H(N J }e
J A

»
»n

DO( reactants)

ArEOl

Figure 15F.1 The definition of A E, for the calculation of
equilibrium constants.

D (products)




Contributions to equilibrium constants

i

Figure 15F.2 The array of R(eactants) and P(roducts) energy
levels. At equilibrium all are accessible (to differing extents,
depending on the temperature), and the equilibrium

AE

composition of the system reflects the overall Boltzmann
distribution of populations. As A E, increases, R becomes

dominant.

: Np
For thereaction R=P, K =—
N

_ 9P —p,Eo/RT

dr

P
R
-
1AL,
—

Figure 15F.3 Itisimportantto take into account the
densities of states of the molecules. Even though P might
lie above Rin energy (that is, A,E, is positive), P might have
so many states that its total population dominates in the
mixture. In classical thermodynamic terms, we have to
take entropies into account as well as enthalpies when
considering equilibria.



Contributions to equilibrium constants

For the reaction R — P, assume that R has only a single accessible level, so that g = 1, and that P
has a large number of closely spaced levels, so that g, = kt/e. The equilibrium constant is:

K = k_Te—ArEOIRT
&

* It can be seen that when A E, is very large, the exponential term dominates, and K << 1,
Indicating that very little P is present at equilibrium.

* When A E, is small, but positive, K can exceed 1 because the factor kT/e may be large enough
to offset the low value of the exponential term. The size of K then results from the large
amount of P at equilibrium resulting from its high density of states.

» At low temperatures, K << 1, and R predominates at equilibrium.

« At high temperatures, the exponential function approaches 1, and P becomes dominant.

 For this endothermic reaction, a temperature increase favors P because its states become
Increasingly accessible as the temperature increases.



Contributions to equilibrium constants

AE

Figure 15F.4 The model used in the text for exploring the
effects of energy separations and densities of states on
equilibria. The products P can dominate provided A E, is hot
too large and P has an appreciable density of states.



