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Statistical Thermodynamics

Statistical thermodynamics provides the link between the microscopic (i.e., molecular) properties of matter 

and its macroscopic (i.e., bulk) properties.  It provides a means of calculating thermodynamic properties 

from the statistical relationship between temperature and energy.

Based on the concept that all macroscopic systems consist of a large number of states of differing energies, 

and that the numbers of atoms or molecules that populate each of these states are a function of the 

thermodynamic temperature of the system.

One of the first applications of this concept was the development of the kinetic theory of gases and the 

resulting  Maxwell-Boltzmann distribution of molecular velocities, which was first developed by Maxwell in 

1860 on purely heuristic grounds and was based on the assumption that gas molecules in a system at thermal 

equilibrium had a range of velocities and, hence, energies.

Boltzmann performed a detailed analysis of this distribution in the 1870’s and put it on a firm statistical 

foundation.  He eventually extended the concept of a statistical basis for all thermodynamic properties to all 

macroscopic systems.
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Statistical Thermodynamics



Statistics and Entropy

Macroscopic state :- state of a system 

is established by specifying its T, E ,S ...

Microscopic state :- state of a system is 

established by specifying x, p, ε... of ind.

constituents

More than one microstate can lead to the 

same macrostate.

Example:  2 particles with total E = 2

Can be achieved by microstates 1, 1 or  

2, 0  or 0, 2

Configuration:- The equivalent ways to 

achieve a state

W (weight):- The # of configurations 

comprising a state

Probability of a state:- # configuration 

in state / total # of configurations

(Assumes that the five molecules are distinguishable.)



Weight of a Configuration
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•  Global maximum in f when df = 0 df 
f

x








y

dx 
f

y











x

dy

•  Seek a maximum in f(x,y) subject to a constraint defined by g(x,y) = 0

•  Since g(x,y) is constant dg = 0 and: dg 
g

x






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y

dx 
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dy  0

•  This defines 
dx 


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y 
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
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x 
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y









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dx

•  Eliminating dx or dy from the equation for df: df 
f

y

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g
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
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
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y
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


dx  0

• Defines undetermined multiplier  

f
y

g
y

or  
f
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g

x

f

x
 

g

x








 0 or



x
f g  0 f

y


g

y








 0



y
f g  0or

Same as getting unconstrained maximum of  K  f g 

Undetermined Multipliers (Chemist’s Toolkit 15A.1)



Example of Undetermined Multipliers

A rectangular area is to be enclosed by a fence having a total length of 16 

meters, where one side of the rectangle does not need fence because it is 

adjacent to a river. What are the dimensions of the fence that will enclose 

the largest possible area?
river

y

x x

Thus, the principal (area) function is: F(x,y) = xy (1)

and the constraint (16 meters) is:         f(x,y) = 2x + y − 16 = 0 (2)

If F(x,y) were not constrained, i.e., if x and y were independent, then the derivative (slope) of F would be zero:

(3)

and

(4)

However, this provides only two equations to be solved for the variables x and y, whereas three equations must 

be satisfied, viz., Eqs. (4) and the constraint equation f(x,y) = 0.
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Example of Undetermined Multipliers

The method of undetermined multipliers involves multiplying the constraint equation by another quantity, λ, 

whose value can be chosen to make x and y appear to be independent. This results in a third variable being 

introduced into the three-equation problem.  Because f(x,y) = 0, maximizing the new function F’

F’(x,y) ≡ F(x,y) + λ f(x,y) (5)

is equivalent to the original problem, except that now there are three variables, x, y, and λ, to satisfy three 

equations:

(6)

Thus Eq. 5 becomes

F’(x,y) = xy + λ (2x + y -16) (7)

Applying Eqs. (6),

yielding λ = −4, which results in x = 4 and y = 8.  Hence, the maximum area possible is A = 32 m2.
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Find a maximum of f x,y  e
 x2 y2 

Subject to the constraint g x,y  x 4y17  0

From slope formula df 
f

x











y

dx 
f

y











x

dy  0 df  2xe
 x2 y2 

dx 2ye
 x2 y2 

dy  0

Global maximum: x = y = 0 Need to find constrained maximum

•  Find undetermined multiplier K(x,y)  f (x,y) g(x, y)  e
 x 2 y2 

  x  4y17 

•  An unconstrained maximum in K must 
K

x
 2xe

 x 2 y2 
   0

K

y
 2ye

 x 2 y2 
 4  0

  2xf

  
y

2 f

•  This implies 2x 
y

2
4x  y

•  Original condition g = 0 g x,y  x 4 4x 17  0

•  Constrained maximum :  x = 1; y = 4

Example of Undetermined Multipliers



Most Probable Distribution

𝐸 =෍

𝑖

𝑁𝑖 ∈𝑖

𝑊 =
𝑁!

𝑁1! 𝑁2! 𝑁3! …
Configurations:

(permutations)

Total energy:

Maximum probability (and, hence, maximum entropy) occurs when each particle is in a different energy level.

But minimum energy occurs when all particles are in the lowest energy level.  Thus, must find the maximum 

probability that is possible, consistent with a given total energy, E, and a given total number of particles, N.

This is an example of a classic problem, in which one must determine the extrema (i.e., maxima and/or 

minima) of a function, e.g. entropy, that are consistent with constraints that may be imposed because of other 

functions, e.g., energy and number of particles.  This problem is typically solved by using the so-called 

LaGrange Method of Undetermined Multipliers.

Example:  N = 20,000; E = 10,000; three energy levels 𝜖1 = 0, 𝜖2 = 1, 𝜖3 = 2.
Constant E requires that N2 + 2N3 = 10,000;  constant N requires that N1 + N2 + N3 = 20,000

0 < N3 < 3333;  W is maximum when N3 ~1300.

𝑁 =෍

𝑖

𝑁𝑖Total number of particles:





The most probable distribution is the one with greatest weight, W.  Thus, must maximize lnW.  Because there 

are two constraints (constant E and constant N), must use two undetermined multipliers: g(xi) = 0 and h(xi) = 0 

so K = (f + ag +bh)

•  Use this to approach to find most probable population: K  ln W a N  N j
j










 b E  N j j

j












(constant N)     (constant E)

Want constrained maximum of lnW (equivalent to unconstrained maximum of K)

•  Use Stirling's Approximation for lnW: K  N ln N  N j ln N j
j

 a N  N j
j










b E  N j j

j












•  Can solve for any single population Ni (all others 0):
N

Ni
 0

Ni

Ni
1

N j

Ni
 0

K

Ni









  ln N i Ni 

1

N i









 a 1 b i  0

K

Ni









  ln Ni 1a  bi  0

ln Ni   1a bi

Most Probable Distribution



N  N j
j

  A e
b j

j

 A  N

e
b j

j


Ni 

Neb i

e
b j

j


b 
1

kbT

pi 
Ni

N


e

i

kbT

e

 j

kbT

j



A  exp  1a   Ni  Ae
biIf , then  

•  A (a) can be eliminated 

by introducing N:

Boltzmann Temperature  (will prove later)

Boltzmann Distribution

Boltzmann Distribution

ln Ni   1a bi

Τ𝑁𝑖 𝑁𝑗 = e−𝛽 𝜀𝑖−𝜀𝑗 = e− Τ𝜀𝑖−𝜀𝑗 𝑘𝑇For relative populations:

Gives populations of states, not levels.

If more than one state at same energy, must account 

for degeneracy of state, gi.
Τ𝑁𝑖 𝑁𝑗 = Τ𝑔𝑖 𝑔𝑗 e−𝛽 𝜀𝑖−𝜀𝑗



Most Probable Distribution

In summary, the populations in the configuration of greatest weight, subject to the constraints of fixed E and N, 

depend on the energy of the state, according to the Boltzmann Distribution: 

i
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kT
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kT
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N e

N
e
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





The denominator of this expression is denoted by q and is called the partition function, a concept that is 

absolutely central to the statistical interpretation of thermodynamic properties which is being developed here.

As can be seen in the above equation, because k is a constant (Boltzmann’s Constant), the thermodynamic 

temperature, T, is the unique factor that determines the most probable populations of the states of a system that is 

at thermal equilibrium.



Most Probable Distribution

If comparing the relative populations of only two states, εi and εj, for example,

i

i j
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The Boltzmann distribution gives the relative populations of states, not energy levels.  More than one 

state might have the same energy, and the population of each state is given by the Boltzmann 

distribution.  If the relative populations of energy levels, rather than states, is to be determined, then 

this energy degeneracy must be taken into account.  For example, if the level of energy εi is gi-fold 

degenerate (i.e., gi states have that energy), and the level of energy εj is gj-fold degenerate, then the 

relative total populations of these two levels is given by:
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Example Partition Function: Uniform Ladder

𝓆 = 1 + e−𝛽𝜀 + e−2𝛽𝜀 +e−3𝛽𝜀 +⋯

𝓆 = 1 + e−𝛽𝜀 + e−𝛽𝜀
2
+ e−𝛽𝜀

3
+⋯

1

1 − 𝑥
= 1 + 𝑥 + 𝑥2 +𝑥3 +⋯

𝓆 =
1

1 − e−𝛽𝜀



Example Partition Function: Uniform Ladder

Because the partition function for the uniform ladder 

of energy levels is given by:

then the Boltzmann distribution for the populations in 

this system is:

Fig. 15B.4 shows schematically how pi varies with 

temperature.  At very low T, where q ≈ 1, only the 

lowest state is significantly populated.  As T increases, 

higher states become more highly populated.  Thus, 

the numerical value of the partition function gives an 

indication of the range of populated states at a given T.
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Two-Level System

For a two-level system, the partition function and 

corresponding population distribution are given 

by:

and
1 1 kTq e e
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Two-Level System

In this case, because there are only two levels 

and, hence, only two populations, p0 and p1, 

and because ε0 = 0 and ε1 = 1, then

and

At T = 0 K, q = 1, indicating that only one state 

is occupied.  With increasing temperature, q

approaches 0.5, at which point both states are 

equally populated.  Thus, it can be generalized 

that as T → ∞, all available states become 

equally populated.
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Generalizations Regarding the Partition Function

Conclusions regarding the partition function:

• Indicates the number of thermally accessible states in a system.

• As T → 0, the parameter β = 1/kT → ∞, and the number of populated states → 1, the lowest (ground) 

state, i.e.,                  , where g0 is the degeneracy of the lowest state.

• As T → ∞, each of the terms β = ε/kT in the partition function sum           → 0, so each term = 1.

Thus,                 , since the number of available states is, in general, infinite. 

• In summary, the molecular partition function q corresponds to the number of states that are thermally 

accessible to a molecule at the temperature of the system.
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Contributions to Partition Function

● Total energy of a molecule is the sum of the contributions from its different modes of motion 

(translational, rotational, vibrational), plus its electronic energy:

● Thus, the partition function for the molecule consists of the product of the components from each 

of the four individual types of energy:

g: degeneracy of the corresponding energy level



Translational Partition Function

● Translational energy levels are very closely spaced, thus, at normal 

temperatures, large numbers of them are typically accessible.

● Assume that gas is confined in a three-dimensional volume.

● Quantum states can be modeled by a particle in a 3D box with side 

lengths a, b, and c:

● The translational partition function for a single molecule is
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● For a system having macroscopic dimensions, the summations can be replaced by integrals:

● The above definite integrals evaluate to:

Thus,

● If the thermal de Broglie wavelength, Λ, is defined as                               , then

where Λ has units of length, and qT is dimensionless.

Translational Partition Function
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Example: Calculate the translational partition function for an O2 molecule in a 1 L vessel at 25oC.

Thus, under these conditions, an O2 molecule would have ~1029 quantum states thermally accessible to it.  

The thermal wavelength of the O2 molecule (Λ = h/(2πmkT)1/2) is ~18 pm, which is ~eight orders of 

magnitude smaller than the size of the containing vessel.

In order for the above equation for qT to be valid, the average separation of the particles must be much 

greater than their thermal wavelength. Assuming that O2 molecules behave as a perfect gas at 298K and 

1 bar, for example, the average separation between molecules is ~3 nm, which is ~168 times larger than 

the thermal wavelength.
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Translational Partition Function



Translational Partition Function

As seen by its definition:

the three-dimensional translational partition function increases with the mass of the particle, as m3/2, and 

with the volume, V, of the container.

For a given particle mass and container volume, qT also increases with temperature, as T3/2 because an 

infinite number of states becomes accessible as the temperature increases:

qT → ∞  as  T → ∞
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● The rotational energy of a rigid rotor is

where J is the rotational quantum number 

(0, 1, 2,...) and I is the moment of inertia.

● The rotational partition function for a linear 

molecule is thus

● where the rotational constant     is given by: ෨𝐵 = Τℏ 4π𝑐𝐼
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2𝐽 + 1 𝑒−𝛽ℎ𝑐 ෨𝐵𝐽 𝐽+1

Rotational Partition Function for Diatomic Molecules
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● For molecules with large moments of inertia or at sufficiently high temperature, the above sum 
approximates to

● In general,

where σ is the symmetry number:

– σ = 1 for heteronuclear diatomic molecules

– σ = 2 for homonuclear diatomic molecules

• The temperature above which the approximation shown above for qR is valid is termed the 
characteristic rotational temperature, θR, which is given by:                      .

• At sufficiently high temperatures (T » θR), the rotational partition function for linear molecules is:

Rotational Partition Function for Diatomic Molecules
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T
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● The rotational energy of linear polyatomic molecules is the same as for diatomics, with = 1 for 

nonsymmetric linear molecules (HCN) and 2 for symmetrical molecules (CO2).

● General polyatomic molecules may have 3 different values of I (moments of inertia), and so have 3 

different rotational temperatures.

– If symmetries exist, some of the moments of inertia may be equal.

Θ𝐴 =
ℎ2

8𝜋2𝐼𝐴𝑘
𝑞𝑟𝑜𝑡=

𝜋 ൗ1 2

𝜎

𝑇3

Θ𝐴Θ𝐵Θ𝐶

ൗ1 2

Rotational Partition Function for Polyatomic Molecules

• The symmetry number, , is the distinct 

number of proper rotational operations, plus 

the identity operator, i.e., the number is the 

number of indistinguishable positions in 

space that can be reached by rigid rotations.



Origin of Symmetry Numbers

Quantum mechanical in origin, viz., the Pauli principle forbids 

occupation of certain states.

e.g. H2 occupies only even J-states if the nuclear spins are paired 

(para-H2)  and only odd J-states if the spins are parallel (ortho-H2).

Get about the same value as if each J term contributed only half its 

normal value to the sum.  Thus, must divide by =2.

Similar arguments exist for other symmetries, e.g. CO2: 



Vibrational Partition Function

In the harmonic oscillator approximation, the vibrational 

energy levels in a diatomic molecule form a uniform ladder 

separated by ℏ𝜔 (= hc ǁ𝜈).

ℏ𝜔 = ℎ𝜈

ℏ = ൗℎ 2𝜋

𝜔 = 2𝜋𝜈

ǁ𝜈 = Τ𝜈 𝑐

Thus, using the partition function developed previously for a 

uniform ladder (Example 15B.1):

At sufficiently high temperatures, such that T » θV,

1 1 1 1

1 1
1 1

V

V

hchc

kT T

q
e e

e e

b b   
 

   
 

 

where θV is the characteristic vibrational temperature, 

given by
V hc

k


 

V

V

kT T
q

hc 
 



Vibrational Partition Function

In molecules having sufficiently strong bonds, e.g., C-H bonds (~1000 – 2000 cm-1), the vibrational 

wavenumbers are typically large enough that                .  In such cases, the exponential term in the 

denominator of qV approaches zero, resulting in qV values very close to 1, indicating that only the zero-

point energy level is significantly populated.

1hcb  

By contrast, when molecular bonds are sufficiently weak that                 , qV may be approximated by 

expanding the exponential (ex = 1 + x + …):

Thus, for weak bonds at sufficiently high temperatures:

1hcb  

1 1 1

1 1 (1 ...)
1 1

V

hc
q

hce hc

kT

b  b 
  

     
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 

V kT
q

hc

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Vibrational Partition Function



Electronic Partition Function

● Except for hydrogen atoms, there are no simple formulas for 

electronic energy levels from quantum mechanics.

● The partition function for electronic states is:

𝑞𝐸 = ෍

𝑙𝑒𝑣𝑒𝑙𝑠

𝑔𝑖𝑒
−𝛽𝜀𝑖 = 𝑔0𝑒

−𝛽𝜀0 + 𝑔1𝑒
−𝛽𝜀1 +⋯

● Because the first excited electronic state is typically well 

above the ground state, i.e., 𝜀1 − 𝜀0 ≫ kT, only the ground 

state is populated.

● Exceptions are molecules with low lying electronic states, 

such as NO, NO
2

and O
2
.

Electronic, Vibrational and Rotational energy 
levels for the hydrogen molecule.
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Example of Low Lying Excited Electronic State



Mean Molecular Energy

Because, as shown previously, the overwhelmingly most probable population in a system at temperature T 

is given by the Boltzmann distribution, (                             ), then 𝜀 =
1

𝑞
σ𝑖 ε𝑖𝑒

−𝛽ℇ𝑖 , where β = 1/kT.

1
i i

i

E
N

N N
     

For a system of non-interacting molecules, the mean energy of a molecule      , relative to its ground state, is 

just the total energy of the system, E, divided by the total number of molecules in the system, N:

/ /i

iN N e q
b



The latter relationship can be manipulated to express       in terms only of q by recognizing that

Hence,

where the partial derivatives recognize that q may depend on variables (e.g., V) other than only T. Because 

the above expression gives the mean energy of a molecule relative to its ground state, the complete 

expression for       is:

This result confirms the very important conclusion that the mean energy of a molecule can be calculated 

knowing only the partition function (as a function of temperature).
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Mean Molecular Energy

Comparison of the fraction of populations vs. the total energy of a two-level system.



Translational Energy

Each of the three modes of motion (translational, rotational, and vibrational), as well as the potential energies 

represented by the electronic state and electron spins, contributes to the overall mean energy of a system.

Translational Contribution:

As developed previously, for a three-dimensional container of volume V, the translational partition 

function is given by 

where Λ3 is essentially a constant multiplied by β3/2.  Thus,

In one dimension, 

 
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Rotational Energy

As developed previously, the rotational partition function for a 

linear molecule is given by:

2

2

( 1)

( 1)8(2 1) (2 1)

J J h

R hcBJ JIkT

i i

q J e J e b



     

At sufficiently low temperatures, such that                             ,

the term by term sum for a non-symmetrical molecule gives

/RT hcB k 

2 61 3 5 ...R hcB hcBq e eb b    

Taking the derivative of qR with respect to β gives
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At high temperatures (T >> θR),

Thus,

1R

R

T
q

hcB b
 

1 d d 1

d d
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Rotational Energy



Vibrational Energy

At high temperatures, T >> θV = ℎ𝑐 ǁ𝜈/𝑘, so 

𝜀𝑉 =
ℎ𝑐 ǁ𝜈

e𝛽ℎ𝑐෥𝜈 − 1
=

ℎ𝑐 ǁ𝜈

1 + 𝛽ℎ𝑐 ǁ𝜈 + ⋯ − 1
≈
1

𝛽
= 𝑘𝑇

As developed previously, the vibrational partition function 

for the harmonic oscillator approximation is:

1

1

V
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q

e b 
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

Because qV is independent of volume it can be differentiated 

with respect to β:
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and since the mean energy       is given by 
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However, because most values of θV are very high, 

(> 1000K) this condition is seldom satisfied.



Equipartition of Energy

● Degrees of freedom receive equal amounts of energy, 

each of ½ kT.

● In diatomic molecules at sufficiently high temperature:

– 3 translational degrees of freedom = 3/2 kT

– 2 rotational degrees of freedom = kT

– vibrational potential and kinetic energy = kT

● At sufficiently low temperatures, only the ground state 

is significantly populated. This causes degrees of 

freedom to freeze out and not contribute to the heat 

capacity.

– This can be seen in the treatment of the vibrational 

partition function, as well as in the two-level system 

discussed previously.

– Note that the treatment of the rotational partition 

function on the previous slides cannot predict the 

freezing out of the rotational degrees of freedom, 

because the energy levels were approximated as a 

continuum using the integral.



Electronic & Electron Spin Energies

Because statistical energies are measured relative to the ground state, and only the ground 

electronic state is usually occupied, then

and

𝜀S = Τ2𝜇Bℬ e2𝛽𝜇Bℬ + 1

An electron spin in a magnetic field B can have two possible energy states (𝜀−1/2 = 0 and 𝜀+1/2 =

2𝜇Bℬ) and energy given by

where ms is the magnetic quantum number, and μB is the Bohr magneton (eћ/2me = 9.274 x 10-24 J/T).

𝐸𝑚𝑠
= 2𝜇Bℬ𝑚𝑠

𝑞S =෍

𝑚𝑠

𝑒−𝛽ℇ𝑚𝑠 = 1 + 𝑒−2𝛽𝜇Bℬ

0E  

1Eq 

Electronic Energies

Electron Spin Energies

The spin partition function is therefore

and the mean energy of the spin is



Internal Energy and the Partition Function

As described previously, the mean energy of a system of independent non-interacting molecules 

is given by:

where β = 1/kT.

For a system containing N molecules, the total energy is thus          , so the internal energy U(T) is: N  

ln
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If the system consists of interacting molecules (e.g., a non-ideal gas), then the canonical partition 

function Q must be used:
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𝐶𝑣 =
𝜕𝑈

𝜕𝑇
𝑉

𝜀𝑉 =
ℎ𝑐 ෤𝜈

e𝛽ℎ𝑐෥𝜈 − 1
=

𝑘𝜃𝑣

e
𝜃𝑣

𝑇 − 1

Recall that the constant-volume heat capacity is:

As shown previously, the mean vibrational energy of a collection of harmonic oscillators is given by

where                     is the characteristic vibrational temperature.  Thus, the vibrational contribution to 

the molar heat capacity at constant volume is
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Heat Capacity and the Partition Function



𝐶𝑣 = −𝑘𝛽2
𝜕𝑈

𝜕𝛽
𝑉

= −N𝑘𝛽2
𝜕 𝜀

𝜕𝛽
𝑉

= 𝑁𝑘𝛽2
𝜕2𝑙𝑛𝑞

𝜕𝛽2
𝑉

If the derivative with respect to T is converted into a derivative with respect to β, then Cv can be 

expressed as

If T >> θM, where θM is the characteristic temperature of 

each mode (                                              ), then the 

equipartition theorem can be applied.  In this case, each 

of the three translational modes contributes ½ R.  If the 

rotational modes are represented by νR*, then νR* = 2 for 

linear molecules and 3 for non-linear molecules, so the 

total rotational contribution is ½ νR*R.  If the temperature 

is sufficiently high for νV* vibrational modes to be active, 

then the vibrational contribution is νV*R. Thus, the total 

molar heat capacity is:

In most cases, νV* = 0.

/ and /R VhcB k hc k   

CV,m = ½ (3 + R* + 2V*)R

Heat Capacity and the Partition Function



Entropy and the Partition Function

Boltzmann equation: S = k lnW

where S is the statistical entropy, and W is the weight of the most probable configuration of the system.  

The Boltzmann Equation is one of the most important relationships in statistical thermodynamics, and 

the statistical entropy is identical to the thermodynamic entropy, behaving exactly the same in all 

respects.

• As the temperature decreases, for example, S decreases because fewer configurations are consistent 

with the constant total energy of the system.

• As T → 0, W → 1, so ln W = 0, since only one configuration (viz., the one in which every molecule 

is in the lowest level) is consistent with E = 0.

• As S → 0, T → 0, which is consistent with the Third Law of thermodynamics, i.e., that the entropies 

of all perfect crystals approach zero as T → 0.



Entropy and the Partition Function

Relationship of Boltzmann Equation to the partition function

• For a system of non-interacting and distinguishable molecules,

• For a system of non-interacting and indistinguishable molecules

(e.g., a gas of identical molecules),

• For a system of interacting molecules, use the canonical partition 

function,
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Entropy and the Partition Function

As shown previously, the total energy of a molecule can be closely approximated by the sum of 

the independent contributions from translational (T), rotational (R), vibrational (V), and electronic 

(E) energies.  The total entropy can be similarly treated as a sum of individual contributions.

• For a system of distinguishable, non-interacting molecules, each contribution has the form of 

that for S(T) above:

(for M = R, V, or E)

• For M = T, the molecules are indistinguishable, so

 ( ) (0)]
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M
U T U

S T Nk q
T


 
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T TU T U q
S T Nk

T N


 



Translational Entropy: The Sackur-Tetrode Equation

For a system consisting of a perfect monatomic gas, only translation contributes to the total energy 

and molar entropy, which is described by the Sackur-Tetrode Equation:

where Λ is the thermal wavelength (h/(2πmkT)1/2 described previously, Vm is the molar volume, NA is 

Avogadro’s Number, and R/NA = k.

Since for a perfect gas Vm = RT/p, then Sm can be calculated from

Re-writing the Sackur-Tetrode Equation in the form:

shows that when a perfect monatomic gas expands isothermally from Vi to Vf, ΔS is given by:

which is identical to the expression determined from the thermodynamic definition of entropy.
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Entropy: Rotational Contribution

At sufficiently high temperatures, where                               , 

which is usually the case, then                                          , and                                             

the equipartition theorem predicts the rotational contribution 

to the molar entropy to be RT.  Therefore,

Hence, this relationship indicates that

• The rotational contribution to the entropy increases with 

increasing T because more rotational states become 

accessible.

• The rotational contribution will be large when the 

rotational constant    is small because then the rotational 

levels are more closely spaced.
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Entropy: Vibrational Contribution

The vibrational contribution to the molar entropy, SV
m , can be 

obtained by combining qV (= 1/(1 – e‒βε) with                             , 

the mean vibrational energy:

where the final equality occurs because               .

• Both terms in the right-hand equality approach 0 as T → 0, 

so S = 0 at T = 0.

• S increases as T increases because more vibrational states 

become thermally accessible.

• At a given T, S is larger for higher M.W. molecules than for 

lower M.W. because their energy levels are more closely 

spaced, and thus more are thermally accessible.
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Derived Functions: Enthalpy and Gibbs Energy

𝑆 𝑇 =
𝑈 𝑇 − U 0

𝑇
+ 𝑘𝑙𝑛𝑄𝑈 𝑇 = U 0 −

𝜕𝑙𝑛𝑄

𝜕𝛽
𝑉

The partition function also can be used to calculate the pressure, enthalpy, and Gibbs Energy:

Can use various thermodynamic relationships to calculate other quantities.  In all of the equations below, 

the canonical partition function Q is related to the molecular partition function q by Q = qN for 

distinguishable molecules, and Q = qN/N! for indistinguishable molecules (e.g., as in a gas).

As shown previously, the internal energy and entropy are related to the partition function as follows:

𝐻 = 𝑈 + 𝑃𝑉 𝐻 𝑇 = H 0 −
𝜕𝑙𝑛𝑄

𝜕𝛽 𝑉
+𝑘𝑇𝑉

𝜕𝑙𝑛𝑄

𝜕𝑉 𝑇

𝐺 = 𝐻 − 𝑇𝑆 = 𝐴 + 𝑃𝑉 𝐺 𝑇 = G 0 − 𝑘𝑇𝑙𝑛𝑄+𝑘𝑇𝑉
𝜕𝑙𝑛𝑄

𝜕𝑉 𝑇

𝐺 𝑇 = G 0 − 𝑛𝑅𝑇𝑙𝑛
𝑞

𝑁
(From 𝑄 = Τ𝑞𝑁 𝑁! 𝑎𝑛𝑑 𝑙𝑛𝑄 = 𝑁𝑙𝑛𝑞 − 𝑙𝑛𝑁! 𝑎𝑛𝑑 𝑙𝑛𝑁! = 𝑁𝑙𝑛𝑁 − 𝑁)

𝐺 𝑇 = G 0 − 𝑛𝑅𝑇𝑙𝑛
𝑞𝑚
𝑁𝐴







Equilibrium Constants

As shown previously, the equilibrium constant K of a reaction is related to the standard Gibbs 

energy of reaction, ΔrG
o, (p = 1 bar) by:

ΔrG
o = ‒RTlnK

From statistical thermodynamics, the Gibbs energy is related to the molar partition function by:

qm = q/n           and

In order to calculate a value for K, these equations must  be combined.  To develop an expression 

for K, the standard molar Gibbs energy, Go/n, must be determined for each reactant and product in 

the reaction.  For the gas-phase reaction,

it can be shown that the equilibrium constant is given by:

𝐺 𝑇 = G 0 − 𝑘𝑇𝑙𝑛𝑄+𝑘𝑇𝑉
𝜕𝑙𝑛𝑄

𝜕𝑉 𝑇
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Equilibrium Constants

where ΔrEo is the difference in molar energies of the ground 

states of the products and reactants and is calculated from the 

bond dissociation energies of the various reaction species, i.e., 

Do(products) – Do(reactants).

Using the symbolism of (signed) stoichiometric numbers that 

was introduced previously, K is given by:
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Contributions to equilibrium constants

𝐾 =
𝑁𝑃
𝑁𝑅

=
𝑞𝑃
𝑞𝑅

𝑒 Τ−∆𝑟𝐸0 𝑅𝑇𝑅 ⇌ 𝑃For the reaction              ,



Contributions to equilibrium constants

For the reaction R → P, assume that R has only a single  accessible level, so that qR = 1, and that P 

has a large number of closely spaced levels, so that qP = kt/ε.  The equilibrium constant is:

• It can be seen that when ΔrEo is very large, the exponential term dominates, and K << 1, 

indicating that very little P is present at equilibrium.

• When ΔrEo is small, but positive, K can exceed 1 because the factor kT/ε may be large enough 

to offset the low value of the exponential term.  The size of K then results from the large 

amount of P at equilibrium resulting from its high density of states.

• At low temperatures, K << 1, and R predominates at equilibrium.

• At high temperatures, the exponential function approaches 1, and P becomes dominant.

• For this endothermic reaction, a temperature increase favors P because its states become 

increasingly accessible as the temperature increases.

o /r E RTkT
K e


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