Chapter 1. The properties of gases

Major Concepts

-Ideal gas
-Equations of State
-Real Gases
-Virial Series
-Vdw
-Critical Behavior
-Kinetic Model of Gases
-Velocity and speed distribution
-Types of average speed -Collision of gases and pressure

You should review

- Definition of a mole
- SI Units
- Ideal gas law
- Critical point definition Pressure $P=F / A=\left(\frac{d p}{d t}\right) / A$

Mathematical tools

Force $\quad F=m a=m\left(\frac{d v}{d t}\right)=m\left(\frac{d^{2} r}{d t^{2}}\right)=\frac{d p}{d t}$
Momentum $\quad p=m v=m \frac{d r}{d t}$

- Power series https://en.wikipedia.org/wiki/Power_series
- MacLaurin series
http://mathworld.wolfram.com/MaclaurinSeries.html
- Inflection point
https://www.khanacademy.org/math/differential-calculus/analyzing-func-with-calc-dc/points-of-inflection-dc/v/inflection-points
- Simple derivatives
https://www.mathsisfun.com/calculus/derivatives-rules.html
- Solving cubic equations
https://en.wikipedia.org/wiki/Cubic function
- Spherical Polar coordinates
- Center of Mass Coordinates
- Using Tables of Integrals

Variables of state: specify the state of a system
n, amount of substance
V , volume it occupies

$\mathrm{P}=\mathrm{F} / \mathrm{A}$

Table 1A. 1 Pressure units*
P, pressure
T, temperature

$$
T / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273.15
$$

Name	Symbol	Value
pascal	1 Pa	$1 \mathrm{~N} \mathrm{~m}^{-2}, 1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
bar	1 bar	$10^{5} \mathrm{~Pa}$
atmosphere	1 atm	101.325 kPa
torr	1 Torr	$(101325 / 760) \mathrm{Pa}=133.32 \ldots \mathrm{~Pa}$
millimetres of mercury	1 mmHg	$133.322 \ldots \mathrm{~Pa}$
pounds per square inch	1 psi	$6.894757 \ldots \mathrm{kPa}$

[^0]
Equation of state

Figure 1A.2 The pressure-volume dependence of a fixed amount of perfect gas at different temperatures. Each curve is a hyperbola ($p V=$ constant $)$ and is called an isotherm.

$\mathbf{P}=\mathbf{f}(\mathbf{n}, \mathbf{V}, \mathbf{T})$

Empirical Laws:

Boyle's Law: $\quad \mathrm{PV}=$ constant \quad constant n, T
Charles Law:
$\mathrm{V}=$ constant $\mathrm{x} T$ constant n, P
$\mathrm{P}=$ constant x T constant n, V
Avogadro's Principle: $V=$ constant $x n$ constant P, T

Limiting Laws- strictly true only at $\mathrm{P} \rightarrow 0$

Ideal Gas Law (Perfect Gas Law)
 $P V=n R T$

Table 1A. 2 The gas constant ($R=N_{A} k$)

R	
8.31447	$\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
8.20574×10^{-2}	$\mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
8.31447×10^{-2}	$\mathrm{dm}^{3} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
8.31447	$\mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
62.364	$\mathrm{dm}^{3} \mathrm{Torr} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
1.98721	$\mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

Figure 1A.6 A region of the p, V, T surface of a fixed amount of perfect gas. The points forming the surface represent the only states of the gas that can exist.

Figure 1A. 7 Sections through the surface shown in Fig. 1A. 6 at constant temperature give the isotherms shown in Fig. 1A.2, the isobars shown in Fig. 1A.4, and the isochores shown in Fig. 1A.5.

- Total pressure of gas mixture = sum of partial pressures of the gases
- Partial pressure of the gas is proportion to the mole fraction $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$

$$
\mathrm{P}_{i}=x_{i} \cdot \mathrm{P}
$$

$$
\mathrm{P}=\Sigma \mathrm{P}_{i}, \quad \mathrm{P}_{\mathrm{i}} \mathrm{~V}=\mathrm{n}_{i} \mathrm{RT}
$$

\mathbf{P}_{i} : partial press of gas $i, \quad \mathbf{n}_{\mathbf{i}}$: amount of gas i in moles

By Max Dodge - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35993393

Real gases

-Real gases have molecular interactions, both attractive and repulsive.

- Short range - strongly repulsive
-Long range - weakly attractive
Pairwise potential function $U(r)$ gives potential energy between a pair of molecules as a function of distance between them, r.
We'll ignore orientation dependence (bad for polar molecules; ok for spherical)

Separation

$$
U(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6^{-}}\right.
$$

Lennard-Jones Potential

At critical point, phase boundary between liquid and gas disappears and satisfies:

$$
\left(\frac{\partial p}{\partial V}\right)_{T}=\left(\frac{\partial^{2} p}{\partial V^{2}}\right)_{T}=0
$$

Table 1C.2* Critical constants of gases

	$p_{\mathrm{c}} / \mathrm{atm}$	$V_{\mathrm{c}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$T_{\mathrm{c}} / \mathrm{K}$	Z_{c}	$T_{\mathrm{B}} / \mathrm{K}$
Ar	48.0	75.3	150.7	0.292	411.5
CO_{2}	72.9	94.0	304.2	0.274	714.8
He	2.26	57.8	5.2	0.305	22.64
O_{2}	50.14	78.0	154.8	0.308	405.9

Figure 1C. 2 Experimental isotherms of carbon dioxide at several temperatures. The 'critical isotherm', the isotherm at the critical temperature, is at $31.1^{\circ} \mathrm{C}$.

[^1]Need to modify ideal gas equation of state to accommodate non-ideality of the real gas.

$$
z \equiv \frac{P V_{m}}{R T}
$$

Compressibility
For ideal gas, $\mathrm{z}=1$
Deviation from 1 is measure of non-ideality

Figure 1C. 3 The variation of the compression factor, Z, with pressure for several gases at $0^{\circ} \mathrm{C}$. A perfect gas has $Z=1$ at all pressures. Notice that, although the curves approach 1 as $p \rightarrow 0$, they do so with different slopes.

Virial Coefficients

Virial equation of state: one way to discusses real gases with moderate deviation from ideality

$$
\begin{aligned}
& P V_{m}=R T\left(1+B^{\prime} P+C^{\prime} P^{2} \ldots\right) \\
& P V_{m}=R T\left(1+\frac{B}{V_{m}}+\frac{C}{V_{m}^{2}}+\cdots\right)
\end{aligned}
$$

Coefficients used to calculate intermolecular interactions
1st term (1) represents non-interacting particles
2nd term (B) represents pairs of molecules
3rd term (C) represents trios of molecules (usually less important than B)
Table 1C.1* Second virial coefficients, $B /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$

Math Sidebar

Any analytic function can be fit by an infinite power series
$f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$

Only useful if series can be truncated after a few terms i.e. $a_{n+1} 1 \ll a_{n}$ or $x \ll 1$

	Temperature	
	273 K	600 K
Ar	-21.7	11.9
CO_{2}	-149.7	-12.4
$\mathrm{~N}_{2}$	-10.5	21.7
Xe	-153.7	-19.6

Boyle Temperature, $\mathrm{T}_{\mathbf{B}}$
$\mathrm{B}(\mathrm{T})$ can be,+- or 0
T when $\mathrm{B}(\mathrm{T})=0$ is called Boyle temperature.
Gas behaves ideally at this temp.

[^2]$$
\mathrm{P}=\frac{\mathrm{RT}}{\mathrm{~V}_{\mathrm{m}}-\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}}^{2}}
$$
$$
\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}}^{2}}\right)\left(\mathrm{V}_{\mathrm{m}}-\mathrm{b}\right)=R T
$$

Accounts for intermolecular attraction

Accounts for volume of molecule

Table 1C.3* van der Waals coefficients

	$a /\left(\mathrm{atm} \mathrm{dm}{ }^{6} \mathrm{~mol}^{-2}\right)$	$b /\left(10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)$
Ar	1.337	3.20
CO_{2}	3.610	4.29
He	0.0341	2.38
Xe	4.137	5.16

* More values are given in the Resource section.
$\nexists \sigma$-- diameter of spheres of excluded volume
σ-- diameter of molecules
L -- number of molecules (L/2 pairs)
Excluded volume per pair of atoms: $\quad V=\frac{4 \pi \sigma^{3}}{3}$
vdw gas isotherms qualitatively predict critical behavior. $\mathrm{P}_{\mathrm{c}}, \mathrm{V}_{\mathrm{c}}, \mathrm{T}_{\mathrm{c}}$ can be expressed in terms of vdw constants

Volume V
(c) C. Rose-Pearuck, Brown Universty, 7Jan-99, Chem 201 \#1

Figure 1C. 6 The graphical solution of the cubic equation for V in Example 1C.1.

At tie-line, $\mathrm{P}=$ Vapor Pressure
Liq. \& Gas in Equilibrium

$$
V_{c}=3 \mathrm{~b}
$$

$$
P_{c}=\frac{a}{27 b^{2}}
$$

$$
T_{c}=\frac{27}{R b}
$$

vdw is cubic in volume, so has 3 roots
2 of the roots account for volumes of two phases
1 -- large volume (gas)
2 -- small volume (liquid)
3-- not a stable root ($\mathrm{dP} / \mathrm{dV}$ is positive)
better for qualitative information than quantitative
e.g. NH_{3} at 350 K vdw predicts vp of 61 atm ; actual is 38.4 atm

$$
V_{m}^{3}-\left(b+\frac{R T}{P}\right) V_{m}^{2}+\left(\frac{a}{P}\right) V_{m}-\left(\frac{a b}{P}\right)=0
$$

- Law of Corresponding States -- properties of different gases are similar at their respective critical points.
- Scaling properties to critical parameters produces universal behavior.

Reduced Constants

$$
T_{r}=\frac{T}{T_{r}} \quad P_{r}=\frac{P}{P_{c}} \quad V_{r}=\frac{V}{V_{c}}
$$

Figure 1C. 8 van der Waals isotherms at several values of T / T_{c}. Compare these curves with those in Fig. 1C.2. The van der Waals loops are normally replaced by horizontal straight lines. The critical isotherm is the isotherm for $T / T_{c}=1$.

Figure 1C. 9 The compression factors of four of the gases shown in Fig. 1C. 3 plotted using reduced variables. The curves are labelled with the reduced temperature $T_{r}=T / T_{c}$. The use of reduced variables organizes the data on to single curves.

Figure 1C. 9 The compression factors of four of the gases shown in Fig. 1C. 3 plotted using reduced variables. The curves are labelled with the reduced temperature $T_{r}=T / T_{c}$. The use of reduced variables organizes the data on to single curves.

Table 1C.2* Critical constants of gases

	$p_{c} /$ atm	$V_{c} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	T_{c} / K	Z_{c}	$T_{\mathrm{B}} / \mathrm{K}$
Ar	48.0	75.3	150.7	0.292	411.5
CO_{2}	72.9	94.0	304.2	0.274	714.8
He	2.26	57.8	5.2	0.305	22.64
O_{2}	50.14	78.0	154.8	0.308	405.9

* More values are given in the Resource section.

Other Equations of State

Table 1C. 4 Selected equations of state

	Equation	Reduced form*	Critical constants		
			$p_{\text {c }}$	$V_{\text {c }}$	$T_{\text {c }}$
Perfect gas	$p=\frac{n R T}{V}$				
van der Waals	$p=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}$	$p_{\mathrm{r}}=\frac{8 T_{\mathrm{r}}}{3 V_{\mathrm{r}}-1}-\frac{3}{V_{\mathrm{r}}^{2}}$	$\frac{a}{27 b^{2}}$	36	$\frac{8 a}{27 b R}$
Berthelot	$p=\frac{n R T}{V-n b}-\frac{n^{2} a}{T V^{2}}$	$p_{\mathrm{r}}=\frac{8 T_{\mathrm{r}}}{3 V_{\mathrm{r}}-1}-\frac{3}{T_{\mathrm{r}} V_{\mathrm{r}}^{2}}$	$\frac{1}{12}\left(\frac{2 a R}{3 b^{3}}\right)^{1 / 2}$	$3 b$	$\frac{2}{3}\left(\frac{2 a}{3 b R}\right)^{1 / 2}$
Dieterici	$p=\frac{n R T \mathrm{e}^{-a R T V / n}}{V-n b}$	$p_{\mathrm{r}}=\frac{T_{\mathrm{r}} \mathrm{e}^{2\left(1-1 / T_{\mathrm{r}} V_{\mathrm{r}}\right)}}{2 V_{\mathrm{r}}-1}$	$\frac{a}{4 \mathrm{e}^{2} b^{2}}$	$2 b$	$\frac{a}{4 b R}$
Virial	$p=\frac{n R T}{V}\left\{1+\frac{n B(7}{V}\right.$	$-+\cdots\}$			

* Reduced variables are defined in Section 1C.2(c). Equations of state are sometimes expressed in terms of the molar volume, $V_{\mathrm{m}}=V / n$.

Vdw and other gas law constants can be related to Virial Coefficients B, C, and D e.g. vdw: $\quad B=b-a / R T \quad C=b^{2} \quad D=b^{3}$

Kinetic Theory of Gases

Kinetic Theory of Gases - assumes that the only contribution to the energy of gas is from kinetic energy of molecules (i.e. - potential energy of interactions is negligible) Based on 3 assumptions:

1. Molecules have mass, m, and diameter, d

Characterized by velocity*, v , and momentum $(\mathrm{p}=\mathrm{mv})$ or kinetic energy $\left(\mathrm{KE}=1 / 2 \mathrm{mv}^{2}\right)$ Important quantity: Number density: $\mathrm{n}^{*}=\mathrm{N} / \mathrm{V} \quad\left[\mathrm{Using}\right.$ ideal gas law $\mathrm{n}^{*}=\mathrm{PN}_{\mathrm{A}} / \mathrm{RT}$ $\left.\left(\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}\right)\right]$
2. Size of molecules is negligible (diameters much smaller that average distance travelled between collisions)
3. Molecules do not interact other than perfectly elastic collisions when separation of their centers is equal to d .

Will use kinetic theory to find energy and speed of molecules.
*velocity - vector quantity; has direction (θ, ϕ) and magnitude $(|\mathrm{v}|) \quad v_{x}=\frac{d x}{d t} \quad v_{y}=\frac{d y}{d t} \quad v_{z}=\frac{d z}{d t}$ can be positive or negative
speed -- always positive $\quad v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} \quad v_{x}=v \sin \theta \cos \phi \quad v_{y}=v \sin \theta \sin \phi \quad v_{z}=v \cos \theta$

Collisions with Wall

Consider that you have a wall in the yz plane.
Molecules with a velocity in x direction will collide with wall.
A molecule with v_{x} will collide $\mathrm{w} / \mathrm{wall} \mathrm{w} /$ in time $\Delta \mathrm{t}$.

Will molecule collide with wall?

"Construct" a box with height $=\left|\mathrm{v}_{\mathrm{x}}\right| \Delta \mathrm{t}$ and cross-sectional area $=\mathrm{A}$
Volume $=A\left|v_{x}\right| \Delta t$

- So \# collisions with velocity $v_{x}=\mathrm{n}^{*} \mathbf{A}\left|\mathrm{v}_{x}\right| \Delta \mathrm{t} \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right)$ (Remember, n^{*} is molecules/unit volume) where $\mathrm{f}\left(\mathrm{v}_{\boldsymbol{x}}\right)$ is the fraction of molecules having $\mathrm{v}_{\boldsymbol{x}}$
- Total collisions $=\mathrm{n}^{*} \mathrm{~A} \Delta \mathrm{t}\left|\mathrm{v}_{\mathrm{x}}\right| \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right) \quad$ summed over positive velocities; must know $\mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right)$ to find But, can find P and speed of gas without $f\left(v_{x}\right)$

Consider momentum: Molecule heading toward wall

$$
\begin{array}{rlr}
\text {-momentum before collision: } \mathrm{p}_{\mathrm{x}}=\mathrm{mv}_{\mathrm{x}} & \mathrm{p}_{\mathrm{y}}=\mathrm{mv}_{\mathrm{y}} & \mathrm{p}_{\mathrm{z}}=\mathrm{mv}_{\mathrm{z}} \\
\text { after collision: } \mathrm{p}_{\mathrm{x}}=-\mathrm{m}\left|\mathrm{v}_{\mathrm{x}}\right| & \mathrm{p}_{\mathrm{y}}=\mathrm{mv}_{\mathrm{y}} & \mathrm{p}_{\mathrm{z}}=\mathrm{m}\left|\mathrm{v}_{\mathrm{z}}\right|
\end{array}
$$

-Difference in momenta for each collision: $\Delta \mathrm{p}=2 \mathrm{~m}\left|\mathrm{v}_{\mathrm{x}}\right|$

- Momenta of all collisions $\boldsymbol{\text { of }} \boldsymbol{v}_{\mathbf{x}}=\Delta \mathrm{p} /$ collision $\quad \#$ collisions $=2 \mathrm{~m}\left|\mathrm{v}_{\mathrm{x}}\right| \mathrm{n}^{*} \mathrm{~A} \Delta \mathrm{t}\left|\mathrm{v}_{\mathrm{x}}\right| \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right)=2 \mathrm{mn} * \mathrm{~A} \Delta \mathrm{t}\left|\mathrm{v}_{\mathrm{x}}\right| 2 \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right)$
-Momenta for all collisions $=\left.2 \mathrm{mn} * \mathrm{~A} \Delta \mathrm{t} \Sigma\left|\mathrm{v}_{\mathrm{x}}\right|\right|^{2} \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right)$ summed over positive velocities

Using Change in Momentum to find Pressure of a Gas

$\sum_{\text {positive }} v_{x}^{2} f\left(v_{x}\right)=\frac{1}{2} \sum_{\text {all }} v_{x}^{2} f\left(v_{x}\right)$ b/c on average, as many molecules have positive as negative velocity

- Define average squared velocity $\left\langle v_{x}^{2}\right\rangle=\sum_{a l l} v_{x}^{2} f\left(v_{x}\right)$ (angle brackets used to denote an average)

$$
\sum_{\text {positive }} v_{x}^{2} f\left(v_{x}\right)=\frac{1}{2}\left\langle v_{x}^{2}\right\rangle
$$

- Change in momenta for all collisions $2 \mathrm{mn} * \mathrm{~A} \Delta \mathrm{t} \Sigma\left|\mathrm{v}_{\mathrm{x}}\right|^{2} \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right): \Delta p=m n^{*} A \Delta t\left\langle v_{x}^{2}\right\rangle$
- Pressure of a Gas

Pressure $=$ Force/unit Area
Force $(\mathrm{F})=$ mass $(\mathrm{m}) \cdot \operatorname{acceleration}(\mathrm{a})=\mathrm{m} \cdot \mathrm{dv} / \mathrm{dt}=\mathrm{dp} / \mathrm{dt} \sim \Delta \mathrm{p} / \Delta \mathrm{t}$
Therefore, $\mathrm{P} \sim \Delta \mathrm{p} / \Delta \mathrm{tA} P=m n^{*}\left\langle v_{x}^{2}\right\rangle$

- Pressure in terms of velocity $P V=m n N_{A}\left\langle v_{x}^{2}\right\rangle=n M\left\langle v_{x}^{2}\right\rangle$

Use ideal gas $\mathrm{nRT}=P V=n M\left\langle v_{x}^{2}\right\rangle$. So, $\left\langle v_{x}^{2}\right\rangle=\frac{R T}{M}$
relates a microscopic quantity (velocity) to macroscopic quantity (temperature)
Choose other walls would get same result for v_{y} and v_{z}

$$
v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}
$$

Average: $\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle=\frac{3 R T}{M}$

- root-mean-square speed
$u=\sqrt{\frac{3 R T}{M}} \quad\left\langle v^{2}\right\rangle^{1 / 2} \equiv u$

Recap \& Reminders

- Virial Series and virial coefficients used to describe real gases

$$
P V_{m}=R T\left(1+\frac{B}{V_{m}}+\frac{C}{V_{m}^{2}}+\cdots\right)
$$

- Van der Waals equation of state corrects for non-idealities with constants a and b

$$
\mathbf{P}=\frac{\mathbf{R T}}{\mathbf{V}_{\mathrm{m}}-\mathbf{b}}-\frac{\mathbf{a}}{\mathbf{V}_{\mathrm{m}}^{2}}
$$

- Reduced parameters (Tr, Vr, Pr) can be used to compare different gases since many properties scale as a ratio of their critical points. Principle of Corresponding States

$$
T_{r}=\frac{T}{T_{c}} \quad P_{r}=\frac{P}{P_{c}} \quad V_{r}=\frac{V}{V_{c}}
$$

- Other equations of states are used. These models of gas laws can be related to each other.
- Kinetic theory of gases assumes gases have mass m, diameter, d and velocity v.

$$
\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}
$$

Average $K E=\frac{m\left\langle v^{2}\right\rangle}{2}=\frac{m}{2} \frac{(3 R T)}{M}$

$$
\text { Average } K E=\frac{3}{2} k_{b} T
$$

m-mass per atom
M - mass per mole

Boltzmann's constant $\quad k_{b}=R / L$
$\mathrm{M}=\mathrm{mL}$

Only accounts for translational energy

Now, to determine number of collisions, need to know $f\left(v_{x}\right)$-- the probability distribution function

Probability Distribution Function

Start by considering an average $\langle x\rangle=\frac{\sum n_{i} x_{i}}{\sum n_{i}}$
<x> --average property -- will use this notation often!
n_{i}-number of molecules having property
Probability of finding a certain property is $f_{i}=\frac{n_{i}}{n_{T}}$
average: $\langle x\rangle=\sum f_{i} x_{i}$

$$
\text { mean square: }\left\langle x^{2}\right\rangle=\sum f_{i} x_{i}^{2}
$$

(root-mean-square) is different from $\langle x\rangle$ (average).
Mean square is related to degree which numbers differ from average.

- If x is continuous: convert sum to integral

$$
\begin{array}{cc}
\mathrm{dn}=\mathrm{n}_{\mathrm{T}} \mathrm{f}(\mathrm{x}) \mathrm{dx} & \begin{array}{l}
\mathrm{dn}-- \text { number of items having property between } \mathrm{x} \text { and } \mathrm{x}+\mathrm{dx} \\
\mathrm{n}_{\mathrm{T}}-\text { - total number of particles } \\
\mathrm{f}(\mathrm{x}) \text { probability distribution function }
\end{array} \\
\mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{\mathrm{dn}}{\mathrm{n}_{\mathrm{T}}} & \text { Example: }
\end{array}
$$

1) The sum of all fractions is 1 . Such a function is said to be normalized. $\int_{-\infty}^{\infty} f(x) d x=1$
2) Average value of x is given by $\langle x\rangle=\int_{-\infty}^{\infty} x f(x) d x$

$$
\text { Compare to }\langle x\rangle=\sum f_{i} x_{i}
$$

3) Mean Square of x is given by $\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} x^{2} f(x) d x$ Compare to $\left\langle x^{2}\right\rangle=\sum f_{i} x^{2}{ }_{i}$
4) To find the probability that a particle has a property between x_{1} and x_{2}

$$
P\left(x_{1}, x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Velocity distribution function

$$
f\left(v_{x}\right) d v_{x}=\sqrt{\frac{m}{2 \pi k_{b} T}} \exp \left(-\frac{m v_{x}}{2 k_{b} T}\right) d v_{x}
$$

Speed distribution function Justification 1B. 2

$$
F(v) d v=4 \pi\left(\frac{m}{2 \pi k_{b} T}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 k_{b} T}\right)^{2} d v
$$

Figure 1B. 4 The distribution of molecular speeds with temperature and molar mass. Note that the most probable speed (corresponding to the peak of the distribution) increases with temperature and with decreasing molar mass, and simultaneously the distribution becomes broader.

- Decaying exponential
- fraction of molecules with high speeds is small
- Mass factor in exponential
- heavy molecules unlikely to be found at high speeds
- Inverse T in exponential
- greater fraction of molecules at high speeds at high T
- Factor of v^{2}
- Fraction of molecules with low speeds will be small

Distribution of speeds for O_{2}

Probable and Average Speeds

$$
F(v) d v=4 \pi\left(\frac{m}{2 \pi k_{b} T}\right)^{3 / 2} \exp \left(-\frac{m v^{2}}{2 k_{b} T}\right)^{2} d v \quad f(v)=4 \pi\left[\frac{M}{2 \pi R T}\right]^{\frac{3}{2}} v^{2} \exp \left[\frac{-M v^{2}}{2 R T}\right]
$$

$\downarrow \mathrm{m}$ or $\uparrow \mathrm{T}$, maxima occur at higher v .

- Most Probable Speed -- take derivative of
$\mathrm{F}(\mathrm{v}) \mathrm{dv}$ and set equal to 0 .(Do this!)

$$
v_{p}=\sqrt{\frac{2 k_{b} T}{m}}
$$

- Average speed $\bar{v}=\langle\nu\rangle=\sqrt{\frac{8 R T}{\pi M}}$

From $\left\langle v^{\prime}\right\rangle=\int_{0} v F(v) d v_{--}$starts at 0 , because there are
 no negative speeds (Do this!)

- Fraction of molecules having speeds between v_{1} and v_{2}

$$
\left.P\left(v_{1}, v_{2}\right)=\int_{v_{1}}^{v_{2}} F(v) d v=4 \pi\left(\frac{m}{2 \pi k_{b} T}\right)^{3 / 2} \int_{v_{1}}^{v_{2}} \exp \left(-\frac{m v^{2}}{2 k_{b} T}\right)\right)^{2} d v
$$

Must evaluate numerically -can use unites equation with $\mathrm{w} \equiv \mathrm{v} / \sqrt{v_{1} \mathrm{k}_{\mathrm{b}} \mathrm{T} / \mathrm{m}}$ (m in kg)

$$
\mathrm{P}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=\frac{4}{\sqrt{\pi}} \int_{\mathrm{w}_{1}}^{\mathrm{w}_{2}} \exp \left(-\mathrm{w}^{2}\right) \mathrm{w}^{2} \mathrm{dw}
$$

Molecular Collisions

Want to determine the collision frequency and total number of collisions between gas molecules.
Assume molecules are hard spheres with diameters of d.
Two molecules will collide if they approach $w /$ in distance d.
A molecule moving through space at speed v will sweep out cylinder of volume V in Δt. Any molecule whose center is in this volume will be hit.

Collision frequency, Z , depends on molecule's collisional cross-section, speed, \& density of targets. $Z=\sigma \mathrm{v} n^{*}$
density of targets in cylinder depends on number density (molecules / unit volume), n^{*} Using ideal gas (and $\left.\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}\right), n^{*}=\frac{N}{V}=\frac{P N_{A}}{R T}$

Not all molecules moving at same v . The average speed:

$$
\overline{\mathrm{v}}=\int_{0}^{\infty} \mathrm{vF}(\mathrm{v}) \mathrm{dv}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}
$$

Really want average relative velocity b / c molecule is hitting a moving target (another molecule) not a fixed target (e.g. wall) (See Figure 1B.8)

$$
\begin{gathered}
v_{r e l}=\left(\frac{8 k T}{\pi \mu}\right)^{1 / 2} \mu=\frac{m_{A} m_{B}}{m_{A+} m_{B}} \quad v_{r e l}=\sqrt{2} \bar{v} \quad \text { For identical molecules } \\
Z=\sigma \mathrm{v}_{r e l} n^{*} \quad Z=\frac{\sigma v_{r e l} P}{k T}
\end{gathered}
$$

Mean free path (λ) is the average distance traveled by a molecule between collisions

Using z, $\lambda=\frac{k_{b} T}{\sigma P}$

$$
\lambda=\frac{v_{r e l}}{Z}
$$

Get σ from Table 1B. 1 or resource section

Table 1B.1* Collision cross-sections, σ / nm^{2}	
	σ / nm^{2}
$\mathrm{C}_{6} \mathrm{H}_{6}$	0.88
CO_{2}	0.52
He	0.21
$\mathrm{~N}_{2}$	0.43

* More values are given in the Resource section.

Compare λ to σ : Gas is mostly empty space!

Ideal Gas, $\mathrm{PV}=\mathrm{nRT}$

- Compressibility (z), Virial Series, and Coefficients
- How used; Boyle Temperature

Gas Mixtures
Critical Behavior and Law of Corresponding States
Modeling of Intermolecular Interactions in Real Gases
Real Gas Laws: vdw, others
Relationship between intermolecular forces, gas constants, critical constants, and virial coefficients

Kinetic Molecular Theory
Molecular Speeds
Maxwell-Boltzmann distribution
Collision Frequency
Mean Free Path

[^0]: * Values in bold are exact.

[^1]: * More values are given in the Resource section.

[^2]: * More values are given in the Resource section.

