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Topic 1C - Wave Functions and Energy Levels

Origins of the Schrodinger Equation

We seek a wave equation that relates the second derivative of a
function with respect to displacement x to the function itself.
For a particle moving freely in one dimension, with classical
momentum p, the deBroglie wavelength is A = h/p. A wave
function that describes such a wave is:
2rx

w(x)=Asin

where A is a constant. From differential calculus, the first
derivative (i.e., slope) and second derivative of YP(x) with
respect to x are:

A

A—cos—— and -
dx A A dx*

dy(x) , 27 27 x d*y(x) [Izﬁjzsi 27 x

The second equation above is just a constant, (-2n/1)% multiplied by
the original wave function P(x):

diy(x) (2r)
A? —(7) w(x)

Now replace the wavelength A with its equivalent (h/p) from the
deBroglie equation:

dEW(x)_ _(gﬁ )z ( —_ 4”2 2 ()
dx® - L P va)—-th!//x

Multiplying both sides of this equation by -h*/8n*m gives

h* d*(x)_ p’

- 872m dx? 2m

w(x)= Iy (x)

where § = p*2m is the kinetic energy of the particle. If external
forces, such as a Coulombic interaction, are present, then a
potential energy term, V(x), must be included. Representing
the total energy as E (= § + V(x)), then

h*  d’y(x)

- 87°m  dx?®

+V(x) = Ep(x)

which is the Schrodinger Equation in one dimension.
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The Schrodinger wave equation can be written in the following
form:

Hy =Ey

where H is the so-called Hamiltonian “operator” and E is the
total energy.

By analogy with classical electromagnetic wave theory, just as the
intensity of an electromagnetic wave is proportional to the
square of the electric field amplitude,

Intensity « (E_,.)°

so the probability of an electron being at a given position is
proportional to the square of the wave function, i.e., {".

For a particle that is free to move in one dimension (x), the
Schrodinger Equation, as given above, is:

h*  d*p(x)
87°m dx?

+ V(x) = Ey(x)

where m is the mass of the particle, V(x) is the potential energy,
and E is the total energy. Thus, the Hamiltonian operator, H, in
this case is:

h*> d°?
b e — V)

i ;

1 I
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Schematic representation of a particle in a one-dimensional box with infinitely high potential walls.
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Particle in a Box

Because the potential energy is zero everywhere inside the one-
dimensional box, then V(x) = 0 and all of the particle’s energy
must be kinetic. Thus, the Schrodinger Equation for this
system is:

h* d*w(x) _

dzz//(x)_ 87°mE
87°m dx’ -

Ey(x)  or I he

w(x)

This differential equation is solved by determining functions, {(x),
that satisfy it. One such function is {(x) = A sin(kx), where A
and k are constants, since

d*y(x) _A d [d[sin(kx)]
dx®> T dx dx

d[cos(kx)]
dx

= -k*Asin(kx) = - k*y

J = A—d-[kcos(kx)]
dx

= kA

J = - ksin(kx)

, 87'mE h*k*
Thus, kK = L and EzSJrer

The constants A and k can be determined by applying the “boundary
conditions” of the system:

1.) The particle is bound inside the box, i.e., 0 < x < L

2.) The total probability of finding the particle somewhere
inside the box must be 1.

3.) The wave function must be continuous.
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The first and third of these boundary conditions require that

P(0)=0 and Pv(@L)=0
or
A sin(kx0) =0 and Asin(kxL)=0

But sin x = 0 only when x = nnt radians, wheren=0, 1, 2, ...
Thus,

t//(x):Asin(%xJ = kzn—IjT-

The constant A is determined by invoking the second of the above
boundary conditions. The probability of finding the particle on
an infinitesimal length, dx, of the x-axis is 1*(x)dx. Thus,
summing over the entire length of the x-axis (0 to L) gives the
total probability of finding the particle in the box:

[v*eax=1

Substituting the value of {(x):

nr

[y (x)dx - jLAzsinz(—xJ dx=1
d o L -

or

This definite integral evaluates to L/2. Thus,

L 1 2
3 ¥y A=\E

Substituting the values of k and A into the wave function {(x):

w(x) = \/%sin(%x)
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Substituting the value of k (= nn/L) into the expression for the total
energy, E, gives:

E - h%k* ~ hz(nﬁ/L)2 ~ n’h?*
" 87'm 87'm = 8mlL?

wheren=1, 2, 3, ...

The difference in energy between two adjacent energy levels (n, n+1)
is:

_(m+1)*h* n’h*  (@2n+ 1)k’

ot 8ml? 8mIE T 8ml?

Thus, as L increases, the allowed energy levels decrease and become
more closely spaced. At very large L (i.e., macroscopic size), the
allowed energy levels are so closely spaced that they are
essentially continuous.
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Particle in a One-Dimensional “Box”
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FIGURE 15.25

(a) The potential energy for a particle in a box of length L, with the first

three energy levels marked. (b) Wave functions, showing the ground state i and the first
two excited states. The more numerous the nodes, the higher the energy of the state. (c)
The squares of the wave functions from part b, equal to the probability density for finding

the particle at a particular point in the box.

For a two-dimensional box:

h:[n? n
%~ 8m|L L

L]

1
¥ |

2
: S

where n, and n, are quantum numbers.

For a three-dimensional box:

2 2 2
h* 'n n,

X

nzﬂ-

nn,n,

where n,, n, and n, are quantum numbers.
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Figure 4.4. The effect of decreasing box size on the spacing of
quantized levels for a translating particle.
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Figure 4.11. The particle in a two-dimensional square box
for ny = n, = 2. The values of ||?> are shown in order to
visualize the probability of finding the particle at various
locations in the box.
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The wave function for a particle in a cubic box of length L on
each side, and with one corner of the box located at the
origin of Cartesian coordinates, is:

( ) (Y  forg) . (nax) . (5 ox)
X -3 el = sin . sin . | S1nN
Ynxn_‘ n, 'Y \ L)I \ T ! \ L. J \ IJ

FIGURE 4.29 Isosurfaces for

W%, §, Z) for a particle in a cubic
box. (a) Isosurfaces for wave function
value ¥,,; = +0.8. (b) Isosurfaces for
wave function value ¥,,; = +0.2,
Each isosurface is shown in the same
color as the corresponding contour in
Figure 4.28.
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FIGURE 4.30 Representations of W,,,(x, ¥, 2) for a particle in a cubic box. (a) Contour plots for a cut taken at Z = 0.75. (b) Iso-
surfaces for wave function value W,,, = +0.9. (¢) Isosurfaces for wave function value ¥,;; = =0,3, Each isosurface is shown in
the same color as the corresponding contour in (a).
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